Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The presence of valine-154 instead of glycine in the constant region of lambda1 causes a severe lambda1 B cell defect in SJL and lambda1-valine knock-in mice with a compensatory increase in lambda2,3 B cells. The defect is due to low signaling by the lambda1-valine BCR. lambda1-Valine B cells deficient in the SHP-1 phosphatase survive better than lambda2,3 B cells in these mice, or lambda1 B cells in lambda1 wildtype mice. Low signaling is apparently due to misfolding of the lambda1-valine light chain as demonstrated by the absence of a regular beta-sheet structure determined by circular dichroism, the sedimentation of the light chain in solution, and the association of valine-valine constant regions in a yeast two-hybrid assay. lambda1-Valine B cells that survive apparently have a higher BCR signal, presumably because of their specific lambda1-heavy chain combination or having encountered a high-affiniy antigen. lambda1-Valine mice have increased B1 cells which were shown by others to have a higher signaling potential. Valine mice crossed with non-conventional gamma2b transgenic mice, in which B cell development is accelerated and in which B1 cells and high signaling cells are greatly reduced, have essentially no, lambda2,3 B cells, but increased numbers of lambda1-valine B cells. This supports the conclusion that the major defect in lambda1-valine mice is the inability of valine-preB cells to produce a threshold signal for B cell development. The reduction of lambda2,3 B cells in valine mice with a gamma2b transgene shows that the majority of their compensatory increase is almost entirely of the B1 cell type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2006.04.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!