Mouse F9 cells differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm in response to RA and dibutyryl (db-) cAMP. G protein signaling either blocks or mimics RA-induced differentiation, the latter signaling through the Wnt-beta-catenin pathway. In our study, we found that a constitutively active Galpha13 mutant induces F9 cells to differentiate into parietal endoderm in the absence of exogenous agents. Galpha13 expression and subsequent differentiation are accompanied by beta-catenin translocation to the nucleus. Differentiation and changes in cell morphology are supported by rearrangements to the F-actin cytoskeleton. ERM (ezrin-radixin-moesin) proteins, known to link F-actin to transmembrane receptors, are also redistributed during differentiation. Furthermore, morpholino antisense and shRNA approaches show that moesin expression is essential since its knockdown leads to altered F-actin distribution and subsequent apoptosis. Moesin-depleted cells, however, remain attached to the substrate when Galpha13 is constitutively expressed, but they do not differentiate into extraembryonic endoderm. Our study demonstrates a link between Galpha13 signaling that regulates differentiation of F9 cells through primitive to parietal endoderm and a moesin requirement for cell survival.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2006.06.016 | DOI Listing |
Birth Defects Res
November 2024
CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA.
Background: Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation.
View Article and Find Full Text PDFBio Protoc
November 2023
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo ward, Chiba, Japan.
The blastocysts consist of dozens of cells of three distinct lineages: epiblast (Epi), trophoblast (TB), and primitive endoderm (PrE). All embryonic and extraembryonic tissues are derived from Epi, TB, and PrE. Stem cell lines representing preimplantation Epi and TB have been established and are known as embryonic stem cells (ESCs) and trophoblast stem cells (TSCs).
View Article and Find Full Text PDFNature
October 2023
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs).
View Article and Find Full Text PDFDev Biol
October 2023
Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA. Electronic address:
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence.
View Article and Find Full Text PDFCultured naïve pluripotent ESC differentiate into first lineage, XEN or second lineage, formative pluripotency. Hyperosmotic stress (sorbitol), like retinoic acid, decreases naive pluripotency and increases XEN in two ESC lines, as reported by bulk and scRNAseq, analyzed by UMAP. Sorbitol overrides pluripotency in two ESC lines as reported by bulk and scRNAseq, analyzed by UMAP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!