Electrical and optical properties of C46H22N8O4KM (M=Co, Fe, Pb) molecular-material thin films prepared by the vacuum thermal evaporation technique.

Spectrochim Acta A Mol Biomol Spectrosc

Mechanical Engineer Department, Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, Calle del Puente 222, Col. Ejidos de Huipulco, 14380 México, DF, México.

Published: March 2007

In this work, the synthesis of new materials formed from metallic phthalocyanines (Pcs) and double potassium salt from 1,8-dihydroxianthraquinone is reported. The newly synthesized materials were characterized by scanning electron microscope (SEM), atomic force microscopy (AFM), infrared (IR) and Ultraviolet-visible (UV-vis) spectroscopy. The powder and thin-film samples of the synthesized materials, deposited by vacuum thermal evaporation, show the same intra-molecular bonds as in the IR spectroscopy studies, which suggests that the thermal evaporation process does not alter these bonds. The effect of temperature on conductivity and electrical conduction mechanism was measured in the thin films (approximately 137 nm thickness). They showed a semiconductor-like behaviour with an optical activation energy arising from indirect transitions of 2.15, 2.13 and 3.6eV for the C(46)H(22)N(8)O(4)KFe, C(46)H(22)N(8)O(4)KPb and C(46)H(22)N(8)O(4)KCo thin films.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2006.03.040DOI Listing

Publication Analysis

Top Keywords

thin films
12
thermal evaporation
12
vacuum thermal
8
synthesized materials
8
electrical optical
4
optical properties
4
properties c46h22n8o4km
4
c46h22n8o4km m=co
4
m=co molecular-material
4
molecular-material thin
4

Similar Publications

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.

View Article and Find Full Text PDF

Carbon-based nanomaterials with excellent electrical and optical properties are highly sought after for a plethora of hybrid applications, ranging from advanced sustainable energy storage devices to opto-electronic components. In this contribution, we examine in detail the dependence of electrical conductivity and the ultrafast optical nonlinearity of graphene oxide (GO) films on their degrees of reduction, as well as the link between the two properties. The GO films were first synthesized through the vacuum filtration method and then reduced partially and controllably by way of femtosecond laser direct writing with varying power doses.

View Article and Find Full Text PDF

Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application.

Materials (Basel)

January 2025

Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland.

Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!