The molecular basis for the spectral tuning of longwave-sensitive (LWS) visual pigments in mammals have been described in a wide range of placental species, including the primates. However, little is known about the molecular mechanisms in marsupial LWS pigments. Here, we have studied and compared the LWS opsins in four Australian marsupials: two diprotodonts and two polyprotodonts. Phylogenetic analysis establishes that all LWS marsupial sequences form a distinct clade from the placental mammals that is subdivided into diprotodont and polyprotodont groups. Amino acid sequences reveal that substitutions at sites 277 and 285 are largely responsible for the spectral shifts in marsupial LWS pigments and species comparison indicates that the ancestral gene most likely encoded Tyr277 and Ala180. Amino acid substitutions are discussed in the context of spectral shifts in marsupial LWS and in relation to the mechanisms in primate pigments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2006.06.001 | DOI Listing |
Mol Biol Evol
April 2016
Department of Anthropology, Dartmouth College, Hanover, NH Department of Biological Sciences, Class of 1978 Life Sciences Center, Dartmouth College, Hanover, NH
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates.
View Article and Find Full Text PDFJ Comp Neurol
October 2014
ARC Centre of Excellence in Vision Science, Australian National University, Canberra, ACT 0200, Australia; Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia.
Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors.
View Article and Find Full Text PDFVis Neurosci
March 2013
Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106, USA.
All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional.
View Article and Find Full Text PDFJ Comp Neurol
May 2010
Centro de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2370006, Chile.
We studied the retinal photoreceptors in the mouse opossum Thylamys elegans, a nocturnal South American marsupial. A variety of photoreceptor properties and color vision capabilities have been documented in Australian marsupials, and we were interested to establish what similarities and differences this American marsupial showed. Thylamys opsin gene sequencing revealed two cone opsins, a longwave-sensitive (LWS) opsin and a shortwave-sensitive (SWS1) opsin with deduced peak sensitivities at 560 nm and 360 nm (ultraviolet), respectively.
View Article and Find Full Text PDFMarsupials are largely confined to Australasia and to Central and South America. The visual pigments that underlie the photosensitivity of the retina have been examined in a number of species from the former group where evidence for trichromatic colour vision has been found, but none from the latter. In this paper, we report the cone opsin sequences from two nocturnal South American marsupial species, the gray short-tailed opossum, Monodelphis domestica, and the big-eared opossum, Didelphis aurita.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!