The sulfate-reducing enrichment culture N47 can grow on naphthalene or 2-methylnaphthalene as the sole carbon and energy source. Here we show that the culture can furthermore cometabolicallytransform a variety of polycyclic and heteroaromatic compounds with naphthalene or methylnaphthalene as the auxiliary substrate. Most of the cosubstrates were converted to the corresponding carboxylic acids, frequently to several isomers. The mass spectra of specific metabolites that were extracted from supernatants of cultures containing the cosubstrates benzothiophene, benzofuran, and 1-methylnaphthalene resembled known intermediates of the anaerobic naphthalene and 2-methylnaphthalene degradation pathways (i.e., naphthyl-2-methylsuccinic acid and naphthyl-2-methylenesuccinic acid). This indicates that some of the tested compounds were first methylated and then transformed to the corresponding methylsuccinic acids by a fumarate addition to the methyl group. For some of the cosubstrates, a partial or total inhibition of growth on the auxiliary substrate was observed. This was not caused by the toxicity of the individual cosubstrate itself, but by a specific combination of auxiliary substrate and cosubstrate. None of the cosubstrates tested could be utilized as the sole carbon source and electron donor by the enrichment culture N47. Field investigations at the tar-oil-contaminated aquifer, where strain N47 originated, revealed the presence of a number of metabolites similar to the ones identified in batch culture supernatants. Our findings suggest that aromatic hydrocarbons and heterocyclic compounds can be converted by aquifer organisms and produce a variety of polar compounds that become mobile in groundwater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es0525410 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Ocean University of China, School of Medicine and Pharmcy, 5 Yushan Road, 266003, Qingdao, CHINA.
Due to the inaccessibility of β1-4-N-acetylgalactosaminyltransferase for the direct glycan chain elongation, the enzymatic synthesis of 0-series ganglioside with extended backbone has not been explored. In this the sialic acid was enzymatically introduced as an auxiliary group to overcome the limitation of substrate specificity of Campylobacter jejuni β1-4-N-acetylgalactosaminyltransferase (CjCgtA) to achieve the synthesis of desired extended 0-series ganglioside core structures. A bacterial α2-6-sialyltransferase from Photobacterium damselae (Pd2,6ST) exhibits unexpected acceptor substrate specificity for 0-series ganglioside core structures, providing an easy access for the synthesis of complex gangliosides bearing the sialyl N-acetylgalactosamine unit.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, China. Electronic address:
Thiram is a readily synthesized, cost-effective antimicrobial agent widely used to control diseases in fruits and vegetables. Given the potential health hazards associated with thiram residues and advancements in detection methods, it is crucial to develop a rapid and sensitive technique for detecting these residues on fruit surfaces. Here, we prepared the Ag@filter paper (Ag@FP) surface-enhanced Raman scattering (SERS) substrate in a controlled manner and innovatively developed a capillarity-assisted SERS (CA-SERS) detection method.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA.
Uridine insertion/deletion editing of mitochondrial messenger RNAs (mRNAs) in kinetoplastids entails the coordinated action of three complexes. RNA Editing Catalytic Complexes (RECCs) catalyze the enzymatic reactions, while the RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C) coordinate interactions between RECCs, mRNAs and hundreds of guide RNAs that direct edited sequences. Additionally, numerous auxiliary factors are required for productive editing of specific mRNAs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Structural Biology and Biotechnology, Department of Chemical Engineering University of Patras, Patras, Greece. Electronic address:
Lytic polysaccharide monooxygenases (LPMOs) are key enzymes for the biotechnological exploitation of lignocellulosic biomass, yet their efficient application depends on the in-depth understanding of their mechanism of action. Here, we describe the structural and mutational characterization of a C4-active LPMO from Myceliophthora thermophila, MtLPMO9F, that belongs to auxiliary activity family 9 (AA9). MtLPMO9F is active on cellulose, cello-oligosaccharides and xyloglucan.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland.
Chiral cyclopentadienyl (Cp) metal complexes are frequently used in asymmetric catalysis by virtue of their high reactivity and selectivity. Planar-chiral-only rhodium and iridium cyclopentadienyl complexes are particularly promising due to unrestricted chemical space for Cp ligand design while retaining structural simplicity. However, they are currently still niche because of a lack of efficient synthetic strategies that avoid lengthy chiral auxiliary routes or chiral preparatory HPLC resolution of the complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!