Root responses to insect pests are an area of plant defense research that lacks much information. We have identified more than 150 sugar beet root ESTs enriched for genes responding to sugar beet root maggot feeding from both moderately resistant, F1016, and susceptible, F1010, genotypes using suppressive subtractive hybridization. The largest number of identified F1016 genes grouped into the defense/stress response (28%) and secondary metabolism (10%) categories with a polyphenol oxidase gene, from F1016, identified most often from the subtractive libraries. The differential expression of the root ESTs was confirmed with RT-PCR. The ESTs were further characterized using macroarray-generated expression profiles from F1016 sugar beet roots following mechanical wounding and treatment of roots with the signaling molecules methyl jasmonate, salicylic acid and ethylene. Of the examined root ESTs, 20, 17 and 11% were regulated by methyl jasmonate, salicylic acid and ethylene, respectively, suggesting these signaling pathways are involved in sugar beet root defense responses to insects. Identification of these sugar beet root ESTs provides knowledge in the field of plant root defense and will lead to the development of novel control strategies for control of the sugar beet root maggot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-006-0201-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!