Emerin is a type II inner nuclear membrane (INM) protein of unknown function. Emerin function is likely to be important because, when it is mutated, emerin promotes both skeletal muscle and heart defects. Here we show that one function of Emerin is to regulate the flux of beta-catenin, an important transcription coactivator, into the nucleus. Emerin interacts with beta-catenin through a conserved adenomatous polyposis coli (APC)-like domain. When GFP-emerin is expressed in HEK293 cells, beta-catenin is restricted to the cytoplasm and beta-catenin activity is inhibited. In contrast, expression of an emerin mutant, lacking its APC-like domain (GFP-emerinDelta), dominantly stimulates beta-catenin activity and increases nuclear accumulation of beta-catenin. Human fibroblasts that are null for emerin have an autostimulatory growth phenotype. This unusual growth phenotype arises through enhanced nuclear accumulation and activity of beta-catenin and can be replicated in wild-type fibroblasts by transfection with constitutively active beta-catenin. Our results support recent findings that suggest that INM proteins can influence signalling pathways by restricting access of transcription coactivators to the nucleus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1523183PMC
http://dx.doi.org/10.1038/sj.emboj.7601230DOI Listing

Publication Analysis

Top Keywords

beta-catenin activity
12
beta-catenin
9
inner nuclear
8
nuclear membrane
8
emerin
8
nucleus emerin
8
function emerin
8
apc-like domain
8
nuclear accumulation
8
growth phenotype
8

Similar Publications

Triple-negative breast cancer (TNBC) is infamous for its aggressive phenotype and poorer prognosis when compared to other breast cancer subtypes. One factor contributing to this poor prognosis is that TNBC lacks expression of the receptors that available hormonal or molecular-oriented therapies attack. New treatments that exploit biological targets specific to TNBC are desperately needed to improve patient outcomes.

View Article and Find Full Text PDF

Ginseng has been commonly used as a traditional Chinese medicine in Asian countries for thousands of years. Ginsenosides are the main pharmacologically active ingredients isolated from ginseng and have neuroprotective effects in the treatment of neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To summarise and investigate the protective roles of ginsenosides and their underlying mechanisms in PD and AD, we used ''Ginsenoside", ''Parkinson's disease", ''Alzheimer's disease", ''anti-inflammatory", ''antioxidant", and ''apoptosis" as keywords to search and extract relevant literature information from scientific databases such as Elsevier, PubMed, and Google Scholar databases.

View Article and Find Full Text PDF

Background: Renal fibrosis is a major pathological feature of many chronic kidney diseases, and traditional Chinese medicines (TCM) have shown promising therapeutic potential for treating renal fibrosis. Although the extracts or fractions of Morus alba leaves and twigs have been reported to ameliorate renal fibrosis, the beneficial effects of M. alba root bark (commonly known as Sang-Bai-Pi), a well-known TCM, on this disorder have not been investigated.

View Article and Find Full Text PDF

LIPUS promotes osteogenic differentiation of rat BMSCs and osseointegration of dental implants by regulating ITGA11 and focal adhesion pathway.

BMC Oral Health

January 2025

Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.

Background: Low-intensity pulsed ultrasound (LIPUS) has been used as an effective noninvasive method for treating fractures and osteoarthrosis, but the application in the field of oral implantation is in its infancy. This study aimed to clarify the effect and mechanism of LIPUS on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and implant osseointegration, and to provide an experimental basis for future clinical applications.

Methods: Dental implants were inserted into Wistar rat femurs, and LIPUS was performed for 4 weeks.

View Article and Find Full Text PDF

Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:

Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!