Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Heme oxygenase-1 (HO-1), a rate-limiting enzyme in heme catabolism, has antioxidative, antiapoptotic, and antiinflammatory activities. We examined whether HO-1 might be involved in silicosis.
Objectives: To investigate whether HO-1 can reduce silicosis in mice and humans.
Methods And Measurements: Silicosis was studied using a murine model, and in 46 male patients. Serum HO-1 and 8-hydroxydeoxyguanosine (a marker of oxidative stress) were measured by enzyme-linked immunosorbent assay. Levels of HO-1 were measured by immunohistochemistry and immunoblotting.
Main Results: Serum HO-1 levels were significantly elevated in patients with silicosis compared with age-matched control subjects or patients with chronic obstructive pulmonary disease. Serum HO-1 levels also correlated inversely with serum 8-hydroxydeoxyguanosine levels and positively with vital capacity and forced expiratory volume in one second in patients with silicosis. HO-1 was present in the lungs of humans and mice with silicosis, especially at sites of silica particle deposition. In mice, silica exposure was associated with acute leukocyte infiltration, leading to development of silicotic lung lesions. The inflammation was suppressed by treatment with hemin, an inducer of HO-1, and enhanced by zinc protoporphyrin, an inhibitor of HO-1.
Conclusions: Pulmonary HO-1 expression is increased in silicosis. HO-1 suppresses reactive oxygen species activity, and subsequent pathologic changes, thereby attenuating disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/rccm.200508-1237OC | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!