Previous studies have shown that the valanimycin producer Streptomyces viridifaciens contains two genes encoding proteins that are similar to seryl-tRNA synthetases (SerRSs). One of these proteins (SvsR) is presumed to function in protein biosynthesis, because it exhibits a high degree of similarity to the single SerRS of Streptomyces coelicolor. The second protein (VlmL), which exhibits a low similarity to the S. coelicolor SerRS, is hypothesized to play a role in valanimycin biosynthesis, because the vlmL gene resides within the valanimycin biosynthetic gene cluster. To investigate the role of VlmL in valanimycin biosynthesis, VlmL and SvsR have been overproduced in soluble form in Escherichia coli, and the biochemical properties of both proteins have been analyzed and compared. Both proteins were found to catalyze a serine-dependent exchange of 32P-labeled pyrophosphate into ATP and to aminoacylate total E. coli tRNA with L-serine. Kinetic parameters for the two enzymes show that SvsR is catalytically more efficient than VlmL. The results of these experiments suggest that the role of VlmL in valanimycin biosynthesis is to produce seryl-tRNA, which is then utilized for a subsequent step in the biosynthetic pathway. Orthologs of VlmL were identified in two other actinomycetes species that also contain orthologs of the S. coelicolor SerRS. The significance of these findings is herein discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M603675200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!