The cyclic peptide antibiotics capreomycin and viomycin are generally effective against the bacterial pathogen Mycobacterium tuberculosis. However, recent virulent isolates have become resistant by inactivation of their tlyA gene. We show here that tlyA encodes a 2'-O-methyltransferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and nucleotide C1920 in helix 69 of 23S rRNA. Loss of these previously unidentified rRNA methylations confers resistance to capreomycin and viomycin. Many bacterial genera including enterobacteria lack a tlyA gene and the ensuing methylations and are less susceptible than mycobacteria to capreomycin and viomycin. We show that expression of recombinant tlyA in Escherichia coli markedly increases susceptibility to these drugs. When the ribosomal subunits associate during translation, the two tlyA-encoded methylations are brought into close proximity at interbridge B2a. The location of these methylations indicates the binding site and inhibitory mechanism of capreomycin and viomycin at the ribosome subunit interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2006.05.044 | DOI Listing |
Acta Crystallogr F Struct Biol Commun
July 2023
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
L-2,3-Diaminopropionic acid (L-Dap) is a nonproteinogenic amino acid that plays as an important role as a building block in the biosynthesis of several natural products, including capreomycin, viomycin, zwittermicin, staphyloferrin and dapdiamide. A previous study reported that CmnB and CmnK are two enzymes that are involved in the formation of L-Dap in the biosynthesis of capreomycin. CmnB catalyzes the condensation reaction of O-phospho-L-serine and L-glutamic acid to generate N-(1-amino-1-carboxyl-2-ethyl)glutamic acid, which subsequently undergoes oxidative hydrolysis via CmnK to generate the product L-Dap.
View Article and Find Full Text PDFFront Microbiol
January 2023
Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
Background: Resistance to tuberculosis (TB) drugs has become a major threat to global control efforts. Early case detection and drug susceptibility profiling of the infecting bacteria are essential for appropriate case management. The objective of this study was to determine the drug susceptibility profiles of difficult-to-treat (DTT) TB patients in Ghana.
View Article and Find Full Text PDFAm J Ther
January 2023
Transilvania University, Brasov, Romania.
Background: Advances in drug therapy for pulmonary tuberculosis have had an extraordinary impact on the incidence of tuberculosis in the United States in the past century, which has decreased from 113/100,000 persons in 1920 to 2.2/100,000 in 2020. Modern treatments have contributed to a remarkable decrease in hospitalizations and mortality and have had a significant impact on the duration and severity of illness, quality of life, and work potential of affected persons.
View Article and Find Full Text PDFFront Chem
September 2022
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
CmnC is an α-ketoglutarate (α-KG)-dependent non-heme iron oxygenase involved in the formation of the l-capreomycidine (l-Cap) moiety in capreomycin (CMN) biosynthesis. CmnC and its homologues, VioC in viomycin (VIO) biosynthesis and OrfP in streptothricin (STT) biosynthesis, catalyze hydroxylation of l-Arg to form β-hydroxy l-Arg (CmnC and VioC) or β,γ-dihydroxy l-Arg (OrfP). In this study, a combination of biochemical characterization and structural determination was performed to understand the substrate binding environment and substrate specificity of CmnC.
View Article and Find Full Text PDFFront Microbiol
August 2022
Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.
The tuberactinomycins are a family of cyclic peptide ribosome-targeting antibiotics with a long history of use as essential second-line treatments for drug-resistant tuberculosis. Beginning with the identification of viomycin in the early 1950s, this mini-review briefly describes tuberactinomycin structures and biosynthesis, as well as their past and present application in the treatment of tuberculosis caused by infection with . More recent studies are also discussed that have revealed details of tuberactinomycin action on the ribosome as well as resistance mechanisms that have emerged since their introduction into the clinic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!