The antimicrobial activity of the anionic peptide, AP1 (GEQGALAQFGEWL), was investigated. AP1 was found to kill Staphylococcus aureus with an MLC of 3mM and to induce maximal surface pressure changes of 3.8 mN m(-1) over 1200s in monolayers formed from lipid extract of S. aureus membranes. FTIR spectroscopy showed the peptide to be alpha-helical (100%) in the presence of vesicles formed from this lipid extract and to induce increases in their fluidity (Deltanu circa 0.5 cm(-1)). These combined data show that AP1 is able to function as an alpha-helical antimicrobial peptide against Gram-positive bacteria and suggest that the killing mechanism used by the peptide involves interactions with the membrane lipid headgroup region. Moreover, this killing mechanism differs strongly from that previously reported for AP1 against Gram-negative bacteria, indicating the importance of considering the effects of membrane lipid composition when investigating the structure/function relationships of antimicrobial peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.06.181DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptide
8
staphylococcus aureus
8
aureus membranes
8
formed lipid
8
lipid extract
8
killing mechanism
8
membrane lipid
8
peptide
5
interactions anionic
4
antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!