Phototransformation of the insecticide fipronil: identification of novel photoproducts and evidence for an alternative pathway of photodegradation.

Environ Sci Technol

Equipe Pertubations Environnementales et Xénobiotiques, Laboratoire d'Ecologie Alpine, UMR 5553 UJF/CNRS/UdS, Université Joseph Fourier, BP 53X, 38041 Grenoble Cedex 9, France.

Published: July 2006

Fipronil is a recently discovered insecticide of the phenylpyrazole series. It has a highly selective biochemical mode of action, which has led to its use in a large number of important agronomical, household, and veterinary applications. Previous studies have shown that, during exposure to light, fipronil is converted into a desulfurated derivative (desulfinyl-fipronil), which has slightly reduced insecticidal activity. In this study, the photodegradation of fipronil was studied in solution at low light intensities (sunlight or UV lamp). In addition to desulfinyl-fipronil, a large number of minor photoproducts were observed, including diversely substituted phenylpyrazole derivatives and aniline derivatives that had lost the pyrazole ring. Desulfinylfipronil itself was shown to be relatively stable under both UV light and sunlight, with only limited changes occurring in the substitution of the aromatic ring. Since this compound accumulated to levels corresponding to only 30-55% of the amount of fipronil degraded, it was concluded that one or more alternative pathways of photodegradation must be operating. On the basis of the structurally identified photoproducts, it is proposed that fipronil photodegradation occurs via at least two distinct pathways, one of which involves desulfuration at the 4-position of the pyrazole ring giving the desulfinyl derivative and the other of which involves a different modification of the 4-substituent, leading to cleavage of the pyrazole ring and the formation of aniline derivatives. The latter compounds do not accumulate to high levels and may, therefore, be degraded further. The ecological significance of these results is discussed, particularly with regard to the insecticidal activity of the photoproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es0523946DOI Listing

Publication Analysis

Top Keywords

pyrazole ring
12
photodegradation fipronil
8
large number
8
insecticidal activity
8
aniline derivatives
8
fipronil
6
phototransformation insecticide
4
insecticide fipronil
4
fipronil identification
4
identification novel
4

Similar Publications

Aim: Emerging resistance among pathogens necessitates the development of novel antimicrobial agents. As a result, we aimed to synthesize new coumarins and study their antimicrobial activity with the hope of obtaining effective drugs.

Method: A series of coumarins were synthesized, characterized, and assessed for antimicrobial activity using broth microdilution and agar diffusion methods against Gram-positive (), Gram-negative () bacteria, and fungi ().

View Article and Find Full Text PDF

1,2,3-triazole-based ring connected with pyridazine, triazine, methyl pyrazole, diphenyl pyrazole, and pthalimide moieties through propylene linker have been synthesized for antidiabetic evaluation via click chemistry. The antidiabetic evaluations have been done by molecular docking studies and in- vitro tests and against the DPP-4 enzyme. The molecular docking studies have revealed that compounds 22, 23, 29, and 30 showed hydrogen bond with the DPP-4 enzyme while in vitro tests has revealed the compound 30 has (IC50 values 12.

View Article and Find Full Text PDF

An efficient palladium-catalyzed -allylic alkylation of pyrazoles and unactivated vinylcyclopropanes is demonstrated, affording various -alkyl pyrazoles in ≤99% yield. This protocol displays high atom economy, a broad range of substrates, and excellent regioselectivity and stereoselectivity. Late-stage modification of bioactive molecules, scaled-up reaction, and divergent derivatization documented the practicability of this methodology.

View Article and Find Full Text PDF

Pyrano[2,3-]pyrazole derivatives are a class of compounds exhibiting dual solvent-dependent fluorescence. This interesting and potentially useful optical property is attributed to the excited state intramolecular proton transfer (ESIPT). We have investigated excited state dynamics of these molecules in detail using femtosecond time-resolved fluorescence and transient absorption spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!