A new cascade passivity-based control scheme for tracking purposes is proposed in this paper. The proposed scheme is valid for a certain class of nonlinear systems even with unstable zero dynamic, and it is also useful for regulation and stabilization purposes. The cases where all system parameters are assumed to be known (nonadaptive case) and also the case when they are unknown (adaptive case) are considered. Some simulation examples are studied to analyze the behavior of the proposed scheme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0019-0578(07)60223-7DOI Listing

Publication Analysis

Top Keywords

proposed scheme
8
tracking control
4
control cascade
4
cascade systems
4
systems based
4
based passivity
4
passivity nonadaptive
4
nonadaptive adaptive
4
adaptive cases
4
cases cascade
4

Similar Publications

Quantum mixed-state self-attention network.

Neural Netw

January 2025

Mechanical, Electrical and Information Engineering College, Putian University, Putian, 351100, China.

Attention mechanisms have revolutionized natural language processing. Combining them with quantum computing aims to further advance this technology. This paper introduces a novel Quantum Mixed-State Self-Attention Network (QMSAN) for natural language processing tasks.

View Article and Find Full Text PDF

The marginal wells in low-permeability oil fields are characterized by small storage size, scattered distribution, intermittent production, etc. The construction of large-scale gathering pipelines has large investment. So the current production mode is featured by single well tank oil storage, oil tank truck transportation and manual tank truck scheduling.

View Article and Find Full Text PDF

We propose an alternative scheme for implementing the antibunching effects of two-magnon bundle in a hybrid ferromagnet-superconductor system, where a magnon mode from the yttrium iron garnet (YIG) sphere interacts with a three-level superconducting qubit via photon virtual excitation in the microwave cavity. With the help of the qubit driving from the ground state to the excited state, the cascaded emission of magnon occurs and then the two-magnon bundle is formed. By analyzing the ordinary and generalized second-order correlation functions, it is found that the antibunched two-magnon bundle could be achieved via properly choosing the system parameters, which is originated from the anharmonicity of dressed energy levels induced by magnon-qubit couplings.

View Article and Find Full Text PDF

This Letter discusses the limitations of immersion-free recording schemes for holographic waveguide displays. Traditional holographic recording of waveguides requires recording angles exceeding the critical angle of the hologram-cladding interface. Achieving these angles necessitates edge-lit exposure using prisms and immersion liquids, which are challenging for roll-to-roll mass production and hinder widespread adoption.

View Article and Find Full Text PDF

High-resolution phase-contrast 3D imaging using nano-holotomography typically requires collecting multiple tomograms at varying sample-to-detector distances, usually 3 to 4. This multi-distance approach limits temporal resolution, making it impractical for studies. Moreover, shifting the sample complicates reconstruction, requiring precise alignment, registration, and interpolation to correct for shift-dependent magnification on the detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!