Objective: To observe the length heteroplasmy and point heteroplasmy in human mtDNA control region.
Methods: The peripheral blood, buccal cell, and single hair shaft from 50 individuals and 16 family members, related in their maternallineage were analyzed by direct sequencing, and clones from 20 individuals whose mtDNA sequences have a T-C transition at 16189 nt were sequenced.
Results: No point heteroplasmy were observed in peripheral blood, buccal cell, single hair shaft from the same individual, neither in maternally related individuals. Length heteroplasmy was observed in those individuals with a homopolymeric tract and the different clones from the same individual has different proportions of length variants, but the hair shafts from the same individual were very similar to the measurements made from blood DNA. No length heteroplasmy was observed between different tissues from the same individual.
Conclusion: mtDNA sequences have a characteristic of high consistency and genetic stability, mtDNA sequencing is a suitable tool for forensic applications such as individual identification.
Download full-text PDF |
Source |
---|
Physiol Mol Biol Plants
December 2024
Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, Third Cross Street, Taramani Institutional Area, Chennai, 600113 India.
Unlabelled: Hexaploid var. and tetraploid var. are major weeds in rice fields.
View Article and Find Full Text PDFForensic Sci Int Genet
February 2025
Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Genome Biol Evol
November 2024
Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia.
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Neurology, St. Marianna University School of Medicine, Kawasaki, 2168511, Japan.
Variants in mitochondrial genomes (mtDNA) can cause various neurological and mitochondrial diseases such as mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes (MELAS). Given the 16 kb length of mtDNA, continuous sequencing is feasible using long-read sequencing (LRS). Herein, we aimed to show a simple and accessible method for comprehensive mtDNA sequencing with potential diagnostic applications for mitochondrial diseases using the compact and affordable LRS flow cell "Flongle.
View Article and Find Full Text PDFGenome
December 2024
Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC V9R 5S5, Canada.
Mitochondrial DNA is commonly used in population genetic studies to investigate spatial structure, intraspecific variation, and phylogenetic relationships. The control region is the most rapidly evolving and largest non-coding region, but its analysis can be complicated by heteroplasmic signals of genome duplication in many mammals, including felids. Here, we describe the presence of heteroplasmy in the control region of Canada lynx () through intra-individual sequence variation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!