Aim: To determine the biochemical effect of di-(2-ethylhexyl) phthalate (DEHP) on testes, liver, kidneys and pancreas on day 10 in the process of degeneration of the seminiferous epithelium.
Methods: Diets containing 2% DEHP were given to male Crlj:CD1(ICR) mice for 10 days. The dose of DEHP was 0.90 +/- 0.52 mg/mouse/day. Their testes, livers, kidneys and pancreata were examined for detection of mono-(2-ethylhexyl) phthalate (MEHP), nitrogen oxides (NOx) produced by peroxidation of nitric oxide (NO) with free radicals, and lipid peroxidation induced by the chain reaction of free radicals.
Results: Histological observation and serum analysis showed the presence of severe spermatogenic disturbance, Leydig cell dysfunction, liver dysfunction and dehydration. Unexpectedly, the concentration of MEHP in the testes was extremely low compared with that in the liver. However, the concentration of the NOx in the testes was as high as the hepatic concentration. Furthermore, free radical-induced lipid peroxidation was histochemically detected in the testes but not in the liver.
Conclusion: The results indicate that DEHP-induced aspermatogenesis is caused by the high sensitivity of the testicular tissues to MEHP rather than the specific accumulation or uptake of circulating MEHP into the testes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7262.2007.00220.x | DOI Listing |
Reprod Toxicol
January 2025
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3010, Australia; Department of Paediatrics, University of Melbourne, Parkville 3010, Australia. Electronic address:
Phthalates are ubiquitous environmental pollutants known for their endocrine-disrupting properties, particularly during critical periods such as pregnancy and early childhood. Phthalates alter lipid metabolism, but the role of prenatal exposure on the offspring lipidome is less understood. In particular, we focused on long chain acylcarnitines - intermediates of fatty acid oxidation that serve as potential biomarkers of mitochondrial function and energy metabolism.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:
Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy.
Di-(2-ethylhexyl) phthalate (DEHP) and Cadmium (Cd) affect female reproduction. To date, toxicological research has focused on the effects of individual contaminants, whereas living beings are exposed to mixtures. This study analyzed the effects of a DEHP/Cd mixture on nuclear and cytoplasmic maturation of sheep cumulus-oocyte complexes (COCs) compared with single compounds.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Urology, Shenzhen University General Hospital, Shenzhen, China. Electronic address:
J Hazard Mater
December 2024
College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.
Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!