Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-d-glucosamine, N-acetyl-d-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-d-galactose, organized into trisaccharide repeating units having the sequence -->3)-alpha-d-Fuc4NAc-(1-->4)-beta-d-ManNAcA-(1-->4)-alpha-d-GlcNAc-(1-->. While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-d-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstrom resolution and bound to acetyl-CoA at a 1.66-Angstrom resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1540030PMC
http://dx.doi.org/10.1128/JB.00306-06DOI Listing

Publication Analysis

Top Keywords

crystal structure
12
tdp-fucosamine acetyltransferase
8
acetyltransferase wecd
8
escherichia coli
8
enterobacterial common
8
common antigen
8
structure wecd
8
wecd
6
structure
5
structure tdp-fucosamine
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

A new one-pot approach was developed for the construction of pyrano[3,2-]chromene-2,5-diones by reacting 4-hydroxycoumarins with ethyl 3-oxo-3-phenylpropanoates in the presence of ammonium salts or aminocrotonates under solvent-free conditions. The title compounds were formed by intramolecular cyclization through new C-C and C-O bonds. Structure assignment of compound 3e was confirmed by single crystal X-ray analysis.

View Article and Find Full Text PDF

Phase Control in Monometallic and Alloy Nanomaterials.

Chem Rev

January 2025

Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.

Metal nanomaterials with unconventional phases have been recently developed with a variety of methods and exhibit novel and attractive properties such as high activities for various catalytic reactions and magnetic properties. In this review, we discuss the progress and the trends in strategies for synthesis, crystal structure, and properties of phase-controlled metal nanomaterials in terms of elements and the combination of alloys. We begin with a brief introduction of the anomalous phase behavior derived from the nanosize effect and general crystal structures observed in metal nanomaterials.

View Article and Find Full Text PDF

SORL1 (SORLA, LR11) is a large (2214 residue), multi-domain type 1 integral membrane protein that is the product of the SORL1 gene. In neurons, where it is highly expressed, SORL1 functions as both a substrate of and a cargo receptor for the retromer multi protein complex that is a master regulator of protein trafficking out of the early endosome. The SORL1-Vps26b retromer, in particular, is dedicated to the recycling of cell surface proteins, including APP and AMPA receptor subunit GLUA1, back to the plasma membrane.

View Article and Find Full Text PDF

Background: The development of new innovative treatments to prevent and ameliorate Alzheimer's disease (AD) requires knowledge of molecular mechanisms that are critical to neuronal health. The receptor TREM2 is part of a signaling complex that modulates inflammatory responses, phagocytosis and cell survival in microglia- resident immune cells in the brain that play a critical role in clearing misfolded aggregates such as amyloid beta (Aβ). In recent years, TREM2 has emerged as a promising drug target for AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!