Laser-induced breakdown spectroscopy (LIBS) is presented for detection of several Group I and II elements (e.g., Na, Ca, Li, and K), as well as Mn and CaOH, in bulk aqueous solution at pressures exceeding 2.76 x 10(7) Pa (276 bar). Preliminary investigations reveal only minor pressure effects on the emission intensity and line width for all elements examined. These effects are found to depend on detector timing and laser pulse energy. The results of these investigations have implications for potential applications of LIBS for in situ multi-elemental detection in deep-ocean environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/000370206777887161 | DOI Listing |
Small
January 2025
College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China.
Electrochemical Li extraction technology is a highly promising approach for Li extraction from salt lakes. To enhance its practical application, it is crucial to elucidate the ion/electron transfer mechanism under diverse process conditions particularly different electron fluxes. Different migration intermediate states demonstrate the distinct ion migration mechanisms inside the LiMnO lattice at different electron fluxes.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFTalanta
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China. Electronic address:
Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.
View Article and Find Full Text PDFTalanta
January 2025
Instituto de Historia (IH-CCHS), CSIC, C/ Albasanz 26-28, 28037, Madrid, Spain. Electronic address:
Analysis of glass-based artworks is important for authentication purposes. In recent years, there have been rapid advancements and improvements in the characterization of glass objects using different analytical approaches. The present study presents an interdisciplinary and multi-analytical authentication approach that provides useful tools and markers to unmask possible imitations, counterfeiting, and forgeries in Cultural Heritage glass beads by comparing the composition of historical and modern glass beads.
View Article and Find Full Text PDFForensic Sci Int
December 2024
Ballistics Section of the Spanish Scientific Police Headquarters (National Police), Julián González Segador s/n, Madrid, Spain; Instituto Universitario de Investigación en Ciencias Policiales (IUICP), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
Firearm-related scenarios can be highly complex, involving multiple shooters, firearms, types of ammunition, victims, and various impact zones. Obtaining the maximum amount of information to connect each piece of the puzzle is crucial for resolving these cases. Currently, new tools are being developed in the forensic field that facilitate both fieldwork and laboratory analysis, enabling the estimation of trajectories, identification of shooters, and more.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!