This article will demonstrate that Raman spectroscopy can be a useful tool for monitoring the chemical composition of hydrothermal vent fluids in the deep ocean. Hydrothermal vent systems are difficult to study because they are commonly found at depths greater than 1000 m under high pressure (200-300 bar) and venting fluid temperatures are up to 400 degrees C. Our goal in this study was to investigate the use of Raman spectroscopy to characterize and quantitate three Raman-active salts that are among the many chemical building blocks of deep ocean vent chemistry. This paper presents initial sampling and calibration studies as part of a multiphase project to design, develop, and deploy a submersible deep sea Raman instrument for in situ analysis of hydrothermal vent systems. Raman spectra were collected from designed sets of seawater solutions of carbonate, sulfate, and nitrate under different physical conditions of temperature and pressure. The role of multivariate analysis techniques to preprocess the spectral signals and to develop optimal calibration models to accurately estimate the concentrations of a set of mixtures of simulated seawater are discussed. The effects that the high-pressure and high-temperature environment have upon the Raman spectra of the analytes were also systematically studied. Information gained from these lab experiments is being used to determine design criteria and performance attributes for a deployable deep sea Raman instrument to study hydrothermal vent systems in situ.

Download full-text PDF

Source
http://dx.doi.org/10.1366/000370206777887125DOI Listing

Publication Analysis

Top Keywords

hydrothermal vent
20
raman spectroscopy
12
vent systems
12
deep ocean
8
deep sea
8
sea raman
8
raman instrument
8
raman spectra
8
raman
7
vent
6

Similar Publications

Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.

View Article and Find Full Text PDF

Hydrothermal vents are ecosystems inhabited by a highly specialized fauna. To date, more than 30 gastropod species have been recorded from vent fields along the Central and Southeast Indian Ridge and all of them are assumed to be vent-endemic. During the INDEX project, 701 representatives of the genus Anatoma (Mollusca: Vetigastropoda) were sampled from six abyssal hydrothermal vent fields.

View Article and Find Full Text PDF

Pacmanvirus isolated from the Lost City hydrothermal field extends the concept of transpoviron beyond the family Mimiviridae.

ISME J

January 2025

Information Génomique & Structurale, Unité Mixte de Recherche 7256, Aix-Marseille University, Centre National de la Recherche Scientifique, IMM, IM2B, 13288, Marseille Cedex 9, France.

The microbial sampling of submarine hydrothermal vents remains challenging, with even fewer studies focused on viruses. Here we report the first isolation of a eukaryotic virus from the Lost City hydrothermal field, by co-culture with the laboratory host Acanthamoeba castellanii. This virus, named pacmanvirus lostcity, is closely related to previously isolated pacmanviruses (strains A23 and S19), clustering in a divergent clade within the long-established family Asfarviridae.

View Article and Find Full Text PDF

Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans.

Biology (Basel)

November 2024

Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth's extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab sp.

View Article and Find Full Text PDF

A Prebiotic Route to Lactate from Acetaldehyde, Cyanide and Carbon Dioxide.

Chemistry

December 2024

University of Copenhagen, Chemistry, Universitetsparken 5, Kemisk Institut, 2100, Copenhagen, DENMARK.

The atmospheric concentration of carbon dioxide (CO2) has fluctuated throughout Earth's history. However, the role of CO2 in prebiotic chemistry has predominantly been limitedly postulated as a C1 precursor, which can be reduced to carbon monoxide or methane mimicking the Wood-Ljungdahl pathway. Herein we present neglected roles of CO2 as an active promoter in accessing biologically important C3-builidng blocks such as lactate, via redox-economic reaction cycles from cyanide (C1) and acetaldehyde (C2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!