Hydrogen-bonded monolayers and interdigitated multilayers at the air-water interface.

J Phys Chem B

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.

Published: July 2006

Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp056310rDOI Listing

Publication Analysis

Top Keywords

air-water interface
16
crystalline monolayer
12
hydrogen bonding
8
bonding ions
8
ions sulfonate
8
sulfonate groups
8
self-interdigitated gc18s
8
gc18s crystalline
8
crystalline multilayer
8
crystalline
6

Similar Publications

The film water, with an exceptional capacity to maintain a premelting, liquid-like state even under subzero conditions, provides a potential dynamic conduit for the movement of water in frozen soils. However, the distinctive structural and dynamic characteristics of film water have not been comprehensively elucidated. In this study, molecular dynamics (MD) simulations were conducted to examine the freezing of a system containing ice, water, silica, and gas.

View Article and Find Full Text PDF

Atmospheric Hydroxyl Radical Route Revealed: Interface-Mediated Effects of Mineral-Bearing Microdroplet Aerosol.

J Am Chem Soc

January 2025

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.

Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.

View Article and Find Full Text PDF

Sprayed Aqueous Microdroplets for Spontaneous Synthesis of Functional Microgels.

Angew Chem Int Ed Engl

January 2025

DWI at RWTH Aachen, Macromolecular Chemistry, Pauwelsstrasse 8, 52056, Aachen, GERMANY.

The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.

View Article and Find Full Text PDF

Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant constituents of many PAH mixtures and contribute to risk at contaminated sites. Despite their abundance, the movement of alkylated PAHs remains understudied relative to unsubstituted PAHs. In the present study, passive sampling devices were deployed in the air, water, and sediments at 11 locations across multiple seasons to capture spatial and temporal variability in the abundance and movement of alkylated PAHs at a Brownsfield creosote site in Oregon, USA.

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!