The phenomenon of counterion condensation around a flexible polyelectrolyte chain with N monomers is investigated by Monte Carlo simulations in terms of the degree of ionization alpha, which is proportional to the effective charge. It is operationally defined as the ratio of observed to intrinsic counterion concentration, alpha = co/ci. The observed counterion concentration in the dilute polyelectrolyte solution is equivalent to an electrolyte solution of concentration co with the same counterion chemical potential. It can be determined directly by thermodynamic experiments such as ion-selective electrode. With the polyelectrolyte fixed at the center of the spherical Wigner-Seitz cell, the polymer conformation, counterion distribution, and chemical potential can be obtained. Our simulation shows that the degree of ionization rises as the polymer concentration decreases. This behavior is opposite to that calculated from the infinitely long charged rod model, which is often used to study counterion condensation. Moreover, we find that, for a specified line charge density, alpha decreases with an increment in chain length and chain flexibility. In fact, the degree of ionization is found to decline with increasing polymer fractal dimension, which can be tuned by varying bending modulus and solvent quality. Those results can be qualitatively explained by a simple model of two-phase approximation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp054194m | DOI Listing |
J Cheminform
January 2025
Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China.
Hawk tea has received increasing attention for its unique flavor and potential health benefits, with antioxidant function being one of its significant bioactivities. However, the metabolic profiles, potential antioxidant components, and action mechanisms of different types of hawk tea are still unclear. In this study, the chemical components of five hawk teas were determined using untargeted metabolomics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.
2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
Fatty acid esters of hydroxy fatty acids (FAHFAs) are bioactive lipids that are positively correlated with metabolic health in humans and mice. Since their discovery, understanding the role and regulation of FAHFAs has been a prime focus of research into these lipids. In this Review, we describe how FAHFAs are quantitatively measured from biological samples.
View Article and Find Full Text PDFCommun Eng
January 2025
School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Large-scale optimal design problems involving nonlinear differential equations are widely applied in modeling such as craft manufacturing, chemical engineering and energy engineering. Herein we propose a fast and flexible holomorphic embedding-based method to solve nonlinear differential equations quickly, and further apply it to handle the industrial application of reverse osmosis desalination. Without solving nonlinear differential equations at each discrete point by a traditional small-step iteration approach, the proposed method determines the solution through an approximation function or approximant within segmented computational domain independently.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!