Density functional theory study of the adsorption of alkanethiols on Cu(111), Ag(111), and Au(111) in the low and high coverage regimes.

J Phys Chem B

Unidad de Matematica y Física and Departamento de Fisicoquímica, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.

Published: November 2005

The structure, the surface bonding, and the energetics of alkanethiols adsorbed on Cu(111), Ag(111), and Au(111) surfaces were studied under low and high coverages. The potential energy surfaces (PES) for the thiol/metal interaction were investigated in the absence and presence of externally applied electric fields in order to simulate the effect of the electrode potential on the surface bonding. The electric field affects the corrugation of the PES which decreases for negative fields and increases for positive fields. In the structural investigation, we considered the relaxation of the adsorbate and the surface. The highest relaxation in a direction perpendicular to the surface was observed for gold atoms, whereas silver atoms presented the highest relaxation in a plane parallel to the surface. The surface relaxation is more important in the low coverage limit. The surface bonding was investigated by means of the total and projected density of states analysis. The highest ionic character was observed on the copper surface whereas the highest covalent character occurs on gold. This leads to a strong dependence of the PES with the tilt angle of the adsorbate on Au(111) whereas this dependence is less pronounced on the other metals. Thus, the adsorbate-relaxation and the metal-relaxation contributions to the binding energy are more important on gold. The adsorption of thiols on gold was investigated on the 111 surface as well as on a surface with gold adatoms in order to elucidate the effect of thiols on the surface diffusion of gold. The CH(3)CH(2)S radical adsorbs ontop of the gold adatom. The diffusional barrier of the CH(3)CH(2)SAu species is lower than that for a bare gold adatom and is also lower than that for the bare thiol radical. The adsorption of the molecular species CH(3)SH and CH(3)CH(2)SH was also investigated on Au(111). They adsorb via the sulfur atom ontop of a gold atom. On the other hand, the adsorption of the alkanethiol radicals on the perfect 111 surfaces occurs on the face centered cubic (fcc)-bridge site in the low coverage limit for all metals and shifts toward the fcc site at high coverage on copper and silver.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp053273vDOI Listing

Publication Analysis

Top Keywords

surface bonding
12
surface
11
gold
9
cu111 ag111
8
ag111 au111
8
low high
8
high coverage
8
surface highest
8
highest relaxation
8
low coverage
8

Similar Publications

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

The pulp and paper manufacturing wastewater is as complicated as any other industrial effluent. A promising approach to treating water is to combine photocatalysis and membrane processes. This paper demonstrates a novel photocatalytic membrane technique for solar-powered water filtration.

View Article and Find Full Text PDF

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.

View Article and Find Full Text PDF

Statement Of Problem: The optimal zirconia pretreatment, contingent upon the type of cement used, warrants further research.

Purpose: The purpose of this investigation was to evaluate the influence of various surface pretreatments on the bonding efficacy of cement to zirconia.

Material And Methods: A comprehensive search was conducted across the PubMed, Embase, Scopus, and Web of Science databases for in vitro studies related to bonding with zirconia up to April 2024, supplemented by a manual search.

View Article and Find Full Text PDF

Polyamide (PA) has notable physical and chemical properties and is one of the most versatile synthetic materials in the industrial sector. However, its hydrophobicity creates significant challenges in its beneficiation and modification. Modifications of PA with chitosan nanoparticles (CNPs) can improve its undesired properties but are rarely found in the literature due to the weak interaction between the chemical groups of both structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!