Starburst dendrimers are receiving considerable attention as templates for the assembly of structured arrays of molecular components. This research motivates the development of improved methods for dendrimer characterization-specifically, for determining the numbers, distributions of numbers, and spatial distribution of molecular species synthetically attached to macromolecular templates. Such information provides the basis for advancing strategies aimed at controlling dendrimer functionalization, and thus represents enabling technology for tailoring the composition and structure of molecular arrays fashioned on dendrimer templates. Moreover, this information is vital to the proper interpretation of ongoing experiments in which dendrimers sparsely functionalized with reporter groups are used as probes. In this article, we report MALDI-TOF mass spectrometry and EPR spectroscopy of heterogeneously functionalized G(4)-PAMAM dendrimers bearing nitroxide spin-labels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0515683 | DOI Listing |
Genome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Oncology, The First People's Hospital of Yibin, No.65, Wenxing Street, Cuiping District, Yibin, 644000, China.
Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.
View Article and Find Full Text PDFWorld J Surg Oncol
January 2025
Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Early-onset (EOCC) and late-onset cervical cancers (LOCC) represent two clinically distinct subtypes, each defined by unique clinical manifestations and therapeutic responses. However, their immunological profiles remain poorly explored. Herein, we analyzed single-cell transcriptomic data from 4 EOCC and 4 LOCC samples to compare their immune architectures.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha, 410000, Hunan, China.
Autosomal dominant deafness-15 which is caused by mutation in the POU4F3 gene, has been reported with a wide degree of clinical heterogeneity, even between intrafamilial members. However, the reason is still elusive. In this study, A four-generation Chinese family with 11 patients manifesting late-onset progressive non-syndromic hearing loss was recruited.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, University of Maryland School of Medicine, 419 West Redwood Street, Suite 235, Baltimore, MD, 21201, USA.
Erythroderma is a severe and heterogeneous inflammatory skin condition with little guidance on the approach to management in cases of unknown etiology. To guide therapeutic selection, we sought to create an immunophenotyping platform able to identify aberrant cell populations and cytokines in subtypes of erythroderma. We performed high-parameter flow cytometry on peripheral blood mononuclear cells (PBMCs) and whole blood of a patient with refractory idiopathic erythroderma, erythrodermic patients with Sézary syndrome and pityriasis rubra pilaris, and healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!