Nd(3+)-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF(3)SO(3))(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), (29)Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp052097nDOI Listing

Publication Analysis

Top Keywords

organic/inorganic hybrids
8
oxygen atoms
8
photoluminescence properties
8
local structure
4
structure near-infrared
4
near-infrared emission
4
emission features
4
features neodymium-based
4
neodymium-based amine
4
amine functionalized
4

Similar Publications

Near-infrared wavelength-selective soft actuators have attracted much attention for applications in microsystems in bioliving. It is desirable for the photothermal conversion materials in the actuators to be downsized to the molecular scale. However, in conventional actuator materials using copolymer gels composed of thermosensitive and photothermal conversion molecule-coordinated monomers, the strong cross-linking of molecules in the networks impairs the actuator deformation.

View Article and Find Full Text PDF

Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.

View Article and Find Full Text PDF

A point mutation in a like gene in enhances the anticorrosion activity.

Appl Environ Microbiol

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.

The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.

View Article and Find Full Text PDF

Ultra-stable and Sensitive X-ray Detectors Using 3D Hybrid Perovskitoid Single Crystals.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Organic-inorganic hybrid perovskites (OIHPs) have shown great potential for direct X-ray detection in security screening and medical diagnostics. However, their humidity stability is compromised due to the susceptibility of the structural components to water molecules, thereby limiting their practical application. In this work, stable and sensitive X-ray detection is achieved using high-quality bulk single crystals of the 3D perovskitoid (DMPZ)PbBr (DPB, DMPZ = N,N'-dimethyl-pyrazinium), wherein N-acid protons are replaced with hydrophobic alkyl groups.

View Article and Find Full Text PDF

The hybrid magnetic heterostructures and superlattices, composed of organic and inorganic materials, have shown great potential for quantum computing and next-generation information technology. Organic materials generally possess designable structural motifs and versatile optical, electronic, and magnetic properties, but are too delicate for robust integration into solid-state devices. In contrast, inorganic systems provide robust solid-state interface and excellent electronic properties but with limited customization space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!