A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0. | LitMetric

New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.

J Phys Chem B

Department of Organic Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

Published: October 2005

Density functional theory (DFT) is applied to the dark section of the catalytic cycle of the enzyme cytochrome P450, namely, the formation of the active species, Compound I (Cpd I), from the ferric-hydroperoxide species (Cpd 0) by a protonation-assisted mechanism. The chosen 96-atom model includes the key functionalities deduced from experiment: Asp(251), Thr(252), Glu(366), and the water channels that relay the protons. The DFT model calculations show that (a) Cpd I is not formed spontaneously from Cpd 0 by direct protonation, nor is the process very exothermic. The process is virtually thermoneutral and involves a significant barrier such that formation of Cpd I is not facile on this route. (b) Along the protonation pathway, there exists an intermediate, a protonated Cpd 0, which is a potent oxidant since it is a ferric complex of water oxide. Preliminary quantum mechanical/molecular mechanical calculations confirm that Cpd 0 and Cpd I are of similar energy for the chosen model and that protonated Cpd 0 may exist as an unstable intermediate. The paper also addresses the essential role of Thr(252) as a hydrogen-bond acceptor (in accord with mutation studies of the OH group to OMe).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp054754hDOI Listing

Publication Analysis

Top Keywords

cpd
9
catalytic cycle
8
cytochrome p450
8
p450 formation
8
protonated cpd
8
features catalytic
4
cycle cytochrome
4
formation compound
4
compound compound
4
compound density
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!