The formation of fluorinated tetraphenylporphyrin nanoparticles via rapid expansion processes: RESS vs RESOLV.

J Phys Chem B

Center for Advanced Engineering Fibers and Films, Department of Chemical Engineering, Clemson University, Clemson, South Carolina 29634-0909, USA.

Published: October 2005

Organic nanoparticles of a fluorinated tetraphenylporphyrin (TBTPP) were produced by rapid expansion of supercritical CO(2) solutions into both air (RESS) and an aqueous receiving solution containing a stabilizing agent (RESOLV). The effect of processing conditions on both particle size and form was investigated. The size of the porphyrin nanoparticles produced via RESS increased in a well-behaved manner from 40 to 80 nm as the preexpansion temperature increased from 40 to 100 degrees C, independent of porphyrin concentration, degree of saturation, and preexpansion pressure. RESOLV of TBTPP + CO(2) solutions was investigated both for minimizing particle growth in the free jet and for the prevention of particle agglomeration. Anionic, nonionic, and polymeric stabilizing agents for the aqueous receiving solution were considered. Expansion into a 0.05 wt % SDS solution produced nanorods 50-100 nm in diameter with an aspect ratio of 3-5. RESOLV in a 0.025 wt % Pluronic F68 solution produced well-dispersed, individual, spherical nanoparticles averaging 23 +/- 10 to 32 +/- 10 nm in diameter, independent of the rapid expansion processing conditions selected. Furthermore, the resulting nanoparticle suspensions were stable, with particle sizes remaining unchanged after several months. However, some particle agglomeration occurred at higher (i.e., 1 wt % TBTPP in CO(2)) concentrations. Contact-angle measurements on solid TBTPP compacts with the tested receiving solutions indicate that a moderate wetting agent such as Pluronic F68 is most effective for preserving the size and form of the porphyrin nanoparticles produced by RESOLV. Finally, the fact that nanoparticles are produced from RESS of TBTPP, in contrast with other organics for which microparticles are produced, can be explained in terms of the high melting point of TBTPP (388 degrees C), which results in a solid-state diffusion coefficient of TBTPP low enough so that particle coalescence is significantly reduced in the free jet.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0581072DOI Listing

Publication Analysis

Top Keywords

rapid expansion
12
nanoparticles produced
12
fluorinated tetraphenylporphyrin
8
co2 solutions
8
aqueous receiving
8
receiving solution
8
processing conditions
8
size form
8
porphyrin nanoparticles
8
produced ress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!