The measured Fe vibrational density of states in deoxy-myoglobin, obtained from nuclear resonance vibrational spectroscopy, is compared to results from a normal-mode analysis using an all-atom empirical potential. Substantial disagreement reveals that for this one atom, the empirical potential does not accurately describe the actual forces. A Green function technique is developed to calculate the iron vibrational spectrum of deoxy-myoglobin by coupling the independently calculated heme and globin normal modes; nonbonded interactions between the heme molecule and the protein are essential for a good fit to the measurements. A projection of the eigenvectors from this potential onto the displacements induced by binding of CO demonstrates that normal modes over a broad range centered around 50-150 cm(-1) may drive the ligand-induced structural changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp052950i | DOI Listing |
MAbs
November 2024
Pharmaceutical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Biberach and der Riss, Germany.
Protein formulation development relies on the selection of excipients that inhibit protein-protein interactions preventing aggregation. Empirical strategies involve screening many excipient and buffer combinations by physicochemical characterization using forced degradation or temperature-induced stress, mostly under accelerated conditions. Such methods do not readily provide information on the inter- and intramolecular interactions responsible for the effects of excipients.
View Article and Find Full Text PDFSci Rep
October 2024
Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, Université de Lille, 59652, Villeneuve d'Ascq, France.
The DNA single-strand break (SSB) repair pathway is initiated by the multifunctional enzyme PARP-1, which recognizes the broken DNA ends by its two zinc-finger domains, Zn1 and Zn2. Despite a number of experiments performed with different DNA configurations and reduced fragments of PARP-1, many details of this interaction that is crucial to the correct initiation of the repair chain are still unclear. We performed Molecular Dynamics (MD) computer simulations of the interaction between the Zn1/Zn2 domains of PARP-1 and a DNA hairpin including a missing nucleotide to simulate the presence of an SSB, a construct used in recent experiments.
View Article and Find Full Text PDFJ Phys Chem A
August 2024
Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France.
J Chem Theory Comput
August 2024
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
Advancements have been made to dissipative particle dynamics (DPD), a robust coarse-grained (CG) simulation method, to study the folded structures of four miniproteins (1L2Y, 1WN8, 1YRF, and 2I9M) in explicit and implicit solvents. In this endeavor, we aim to establish model parametrization and enhance computational efficiency. Unlike traditional CG models that use empirical force parameters, ex-force parameters (, , , ) of DPD particles constructed for specific research purposes can be obtained from atomistic molecular dynamics simulations.
View Article and Find Full Text PDFJ Phys Chem Lett
April 2024
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
In the age of all-atom simulations, primitive isotherm models, such as Langmuir, BET, and GAB, are still used widely for analyzing experimental data. However, their routine applications to complex materials are not in line with their underlying assumptions (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!