Kinetic studies on the tensile state of water in trees.

J Phys Chem B

Department Solare Energetik, Hahn-Meitner Institute, 14109 Berlin, Germany.

Published: September 2005

The solar-powered generation and turnover of tensile, cohesive water in trees is described as a kinetic phenomenon of irreversible thermodynamics. A molecular kinetic model for tensile water formation and turnover is presented, which is found to be mathematically equivalent with an autocatalytic reaction (Brusselator). It is also shown to be consistent with the van der Waals equation for real liquid-gas systems, which empirically considers intermolecular forces. It can therefore be used to explain both the irreversible thermodynamics and the kinetics of the tensile liquid state of water. A nonlinear bistable evaporation behavior of tensile water is predicted, which has not yet been experimentally characterized in trees. Conventional sap flow techniques in combination with infrared imaging of heat flow around a local heat source were used to study the dynamics and energetics of water transport of trees during the eclipse of August 11, 1999. The evaporative "pulling force" in a tree was demonstrated with infrared techniques and shown to respond within seconds. While the ambient temperature during the eclipse did not drop by more than 2 degrees C, evaporative water transport was reduced by a factor of up to 2-3. The expected hysteresis (with an up to 50% decrease in energy-conversion-related entropy production) was measured, reflecting a bistable mode of conversion of solar energy into tensile water flow. This nonlinear (autocatalytic) phenomenon, together with tensile molecular order, damped the oscillating behavior of xylem tensile water, and its occasional all-or-none rupture (cavitation) can thus be explained by the nonlinear nature of intermolecular forces active in the water conduit/parenchyma environment. This characterizes the physical chemistry and energetics of tensile water in trees as an active-solar-energy-driven self-organizing process. Water is handled in the form of microcanonical ensembles and transformed into a stretched, metastable icelike state with stronger hydrogen bonding and increased heat of evaporation. The discussed model may open new opportunities for research and understanding toward innovative water technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp051242uDOI Listing

Publication Analysis

Top Keywords

tensile water
20
water
13
water trees
12
tensile
9
state water
8
irreversible thermodynamics
8
intermolecular forces
8
water transport
8
trees
5
kinetic studies
4

Similar Publications

The carbon footprint associated with cement production, coupled with depletion of natural resources and climate change, underscores the need for sustainable alternatives. This study explores the effect of metakaolin (MK) and nano-silica (NS) on concrete's engineering performance and environmental impact. Initially, compressive, tensile, and flexural strength tests, along with durability assessments like water absorption, sorptivity, rapid chloride permeability, and resistance to acid and sulphate attacks, were conducted.

View Article and Find Full Text PDF

Extraction and incorporation of cellulose microfibers from textile wastes into MXene-enhanced PVA-borax hydrogel for multifunctional wearable sensors.

Int J Biol Macromol

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:

Conductive hydrogel has drawn great concern in wearable sensors, human-machine interfaces, artificial intelligence (AI), health monitoring, et al. But it still remains challenge to develop hydrogel through facile and sustainable methods. In this work, a conductive, flexible, bendable, and self-healing hydrogel (PBCM) composed of polyvinyl alcohol (PVA), borax, cellulose microfibers (CMFs), and MXene nanosheet was fabricated by a simple and efficient strategy.

View Article and Find Full Text PDF

Chitosan-based nanocomposite films incorporated with AgNPs/porphyrinic MOFs for killing pathogenic bacteria.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Industrial Technology Research Institute of Jingchu Special Foods, Jingzhou 434000, China. Electronic address:

In this work, a nanocomposite film, designated as CS/PA, was fabricated by integrating chitosan (CS), porphyrinic porous coordination network (PCN), and silver nanoparticles (AgNPs). PCN modified AgNPs was denoted as PCN-AgNPs (PA). The synthesis of PA was verified through transmission electron microscope, Zeta potential, hydrated particle size, element mapping.

View Article and Find Full Text PDF

Biodegradable chitosan-based films decorated with biosynthetic copper oxide nanoparticle for post-harvest tomato preservation.

Int J Biol Macromol

January 2025

School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China. Electronic address:

Postharvest fruit decay caused by pathogens is an important factor leading to product waste and economic losses, and fruit coating is considered an effective strategy to solve this problem due to its simple operation and effectiveness. In this study, nano modified chitosan film (CSC) was created by mixing chitosan (CS) and copper oxide nanoparticles (CuO NPs) synthesized using abandoned Ficus carica fruit. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra indicated the formation of intermolecular interactions between CS and CuO NPs in the composite film.

View Article and Find Full Text PDF

Addressing environmental challenges such as pollution and resource depletion requires innovative industrial and municipal waste management approaches. Cement production, a significant contributor to greenhouse gas emissions, highlights the need for eco-friendly building materials to combat global warming and promote sustainability. This study evaluates the simultaneous use of Sugarcane Bagasse Ash (SCBA) and Stone Dust (SD) as partial replacements by volume for cement and sand, respectively, at varying ratios in eco-strength concrete mixes designed for 28 MPa (ES-28) and 34 MPa (ES-34), emphasizing their economic and environmental benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!