(195)Pt NMR spectroscopic and electrochemical measurements were carried out on commercial Pt-Ru alloy nanoparticle samples to investigate the effect of high-temperature annealing in different vacuum/gas-phase environments. Samples annealed at 220 degrees C in Ar gas, or in a vacuum, did not show any demonstrable change in catalytic activity vs electrochemically reduced, room-temperature samples. In contrast, annealing at 220 degrees C in H(2) gas led to a 3-fold increase in reactivity toward methanol oxidation (per surface site). NMR experiments show that annealing at 220 degrees C (in both Ar and H(2)) leads to a slight reduction in the Fermi level local density of states (E(F)-LDOS) at the Pt sites, which we attribute to surface enrichment of Ru. This electronic effect alone, however, appears to be too small to account for the increase in the catalytic activity observed for the H-treated catalyst. By comparing the electrochemical and NMR data of the H- and Ar-treated samples, we conclude that annealing at 220 degrees C in the hydrogen atmosphere reduces surface Ru oxides into metallic Ru, and consequently, the presence of metallic Ru and its enrichment on the surface are essential for the enhanced catalytic activity. In contrast, heat treatment at 600 degrees C in both vacuum and argon atmosphere increases the particle size and reduces the amount of platinum on the nanoparticle surface, thereby increasing the surface Ru content beyond the optimum surface composition values. This causes a large reduction in catalytic activity. Our results suggest that optimizing the amount of surface Ru by heat treatment at temperatures near 200 degrees C, in a hydrogen atmosphere, can be utilized to produce Pt-Ru alloy nanoparticles with high methanol oxidation activity. Finally, our NMR and electrochemical data, taken together with the lattice parameter measurements, lead to a novel model of Pt-Ru alloy nanoparticles having a Ru-rich core and a Pt-Ru alloy overlayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp058138x | DOI Listing |
J Colloid Interface Sci
January 2025
College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Yunan 650000, PR China. Electronic address:
Active and durable electrocatalysts are essential for commercializing direct methanol fuel cells. However, Pt-based catalysts, extensively utilized in the methanol oxidation reaction (MOR), are suffered from resource scarcity and CO poisoning, which degrade MOR activity severely. Herein, PtRu bimetallic catalysts were synthesized by confining PtRu alloys within the shells of mesoporous carbon hollow spheres (MCHS) via a vacuum-assisted impregnation method (PtRu@MCHS).
View Article and Find Full Text PDFMikrochim Acta
June 2024
Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei Province, PR China.
A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt-Ru-Fe@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores.
View Article and Find Full Text PDFAnal Chem
June 2024
Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes.
View Article and Find Full Text PDFJ Am Chem Soc
June 2024
National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, CAS Center for Excellence in Nanoscience, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, China.
As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction.
View Article and Find Full Text PDFNat Commun
February 2024
State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!