We have studied the nucleation and growth of cubic boron nitride (cBN) films deposited on silicon and diamond-coated silicon substrates using fluorine-assisted chemical vapor deposition (CVD). These comparative studies substantiate that the incubation amorphous/turbostratic BN layers, essential for the cBN nucleation on silicon, are not vital precursors for cBN nucleation on diamond, and they are inherently eliminated. At vastly reduced critical bias voltage, down to -10 V, cBN growth is still maintained on diamond surfaces, and cBN and underlying diamond crystallites exhibit an epitaxial relationship. However, the epitaxial growth is associated with stress in the cBN-diamond interfacial region. In addition, some twinning of crystallites and small-angle grain boundaries are observed between the cBN and diamond crystallites because of the slight lattice mismatch of 1.36%. The small-angle grain boundaries could be eliminated by imposing a little higher bias voltage during the initial growth stage. The heteroepitaxial growth of cBN films on different substrate materials are discussed in the view of lattice matching, surface-energy compatibility, and stability of the substrate against ion irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0517908 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China.
Observing the intricate microstructure changes in abrasive flow machining with traditional experimental methods is difficult. Molecular dynamics simulations are used to look at the process of abrasive flow processing from a microscopic scale in this work. A molecular dynamics model for micro-cutting a single crystal γ-TiAl alloy with a rough surface in a fluid medium environment is constructed, which is more realistic.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China.
Heat dissipation has become a critical challenge in modern electronics, driving the need for a revolution in thermal management strategies beyond traditional packaging materials, thermal interface materials, and heat sinks. Cubic boron arsenide (c-BAs) offers a promising solution, thanks to its combination of high thermal conductivity and high ambipolar mobility, making it highly suitable for applications in both electronic devices and thermal management. However, challenges remain, particularly in the large-scale synthesis of a high-quality material and the tuning of its physical properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Boron dipyrromethene (BODIPY)-based zirconium metal-organic frameworks (Zr-MOFs) possess strong light-harvesting capabilities and great potential for artificial photosynthesis without the use of sacrificial reagents. However, their direct preparation has not yet been achieved due to challenges in synthesizing suitable ligands. Herein, we reported the first successful direct synthesis of BODIPY-based Zr-MOFs, utilizing CO as a feedstock.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Ningbo Institute of Dalian University of Technology, Ningbo 315032, China.
In the high-stakes domain of precision manufacturing, Cubic Boron Nitride (CBN) inserts are pivotal for their hardness and durability. However, post-production surface defects on these inserts can compromise product integrity and performance. This paper proposes an automated detection and classification system using machine vision to scrutinize these surface defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!