The hydrogenation of 1,3-butadiene to different C4H8 species on both Pd(111) and Pt(111) surfaces has been studied by means of periodic slabs and DFT. We report the adsorption structures for the various mono- and dihydrogenated butadiene intermediates adsorbed on both metal surfaces. Radical species are more clearly stabilized on Pt than on Pd. The different pathways leading to these radicals have been investigated and compared to those producing 1-butene and 2-butene species. On palladium, the formation of butenes seems to be clearly favored, in agreement with the high selectivity to butenes observed experimentally. In contrast, the formation of dihydrogenated radical species seems to be competitive with that of butenes on platinum, which could explain its poorer selectivity to butenes and the formation of butane as a primary product.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp052087m | DOI Listing |
Adv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Among direct recycling methods for spent lithium-ion batteries, solid-state regeneration is the route with minimal bottlenecks for industrial application and is highly compatible with the current industrial cathode materials production processes. However, surface structure degradation and interfacial impurities of spent cathodes significantly hinder Li replenishment during restoration. Herein, we propose a unique advanced oxidation strategy that leverages the inherent catalytic activity of spent layered cathode materials to address these challenges.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemistry, 29 Wangjiang Road, 610064, Chengdu, CHINA.
Electrocatalytic transfer alkyne semi-hydrogenation with H2O as hydrogen source is industrially promising for selective electrosynthesis of high value-added alkenes while inhibiting byproduct alkanes. Although great achievements, their development has remarkably restricted by designing atomically sophisticated electrocatalysts. Here, we reported single-crystalline mesoporous copper nanoplates (meso-Cu PLs) as a robust yet highly efficient electrocatalyst for selective alkene electrosynthesis from transfer semi-hydrogenation reaction of alkyne in H2O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!