Molecular structure and vibrational frequencies of the novel surface enolic species intermediate on Ag/Al2O3 have been investigated by means of density functional theory (DFT) calculations and in situ infrared spectroscopy. The geometrical structures and vibrational frequencies were obtained at the B3P86 levels of DFT and compared with the corresponding experimental values. Theoretical calculations show that the calculated IR spectra are in good agreement with the experimental spectroscopic results. In addition, the adsorption energy of enolic species on the Ag/Al2O3 catalyst surface was also evaluated. The reaction mechanism from C2H5OH to enolic species on Ag/Al2O3 catalyst was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp050955+DOI Listing

Publication Analysis

Top Keywords

enolic species
16
species ag/al2o3
12
density functional
8
functional theory
8
theory dft
8
vibrational frequencies
8
ag/al2o3 catalyst
8
dft drifts
4
drifts investigations
4
investigations formation
4

Similar Publications

Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis.

Acc Chem Res

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.

View Article and Find Full Text PDF

Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) ,'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate.

View Article and Find Full Text PDF

Rationale: Polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid have persistent environmental and physiological effects. This study investigates the degradation of CFCO (n = 1-7) with neutral radical fragmentation under oxygen attachment dissociation (OAD). Unique fragments absent from collision-induced dissociation (CID) are observed.

View Article and Find Full Text PDF

Chlorophylls (Chls) are ubiquitous photosynthetic pigments with inherent potential to generate cytotoxic reactive oxygen species. Therefore, all phototrophs and any phagotrophs that attempt to digest phototrophic cells have presumably developed mechanisms to mitigate this phototoxicity. In aquatic environments, the Chls produced by the dominant producers, microalgae, are catabolized into nonphototoxic pigments, cyclopheophorbide enols (CPEs), either by microalga-feeding protists or autonomously, particularly by those carrying secondary chloroplasts during the dismantling of their chloroplasts.

View Article and Find Full Text PDF

First prepared in the late 70s, the pro-ligand 1,3-bis(3,5-dioxo-1-hexyl)benzene (Hbdhb) contains two acetoacetyl terminations linked to a central 1,3-phenylene unit through dimethylene bridges. Since each termination can be either in diketonic or keto-enolic form, in organic solution it exists as a mixture of three spectroscopically resolvable tautomers. In the presence of pyridine, Co and the bdhb anion form a crystalline dimeric compound with formula [Co(bdhb)(py)] (2) and a Co⋯Co separation of more than 11 Å.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!