The interaction between redox polymers, based on Ru- or Os-bis(2,2'-bipyridyl)-poly(4-vinylpyridine), and carbon nanotubes was investigated by spectroscopic and microscopic techniques. These metallopolymers were found to be excellent dispersants for nanotubes, as a result of a good wetting interaction between polymer and nanotubes. The results obtained show that well-coated individual nanotubes can be obtained. In addition, interactions between nanotubes and polymers did not significantly affect the electronic and electrochemical properties of the metallopolymers. On the basis of the electrochemical properties of the polymers this opens the possibility of adding functionality through interaction with nanotubes, either as redox active materials with enhanced mechanical properties or by using these modified nanotubes as nanosized electrochemical sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp051459o | DOI Listing |
Mikrochim Acta
January 2025
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
To enhance the application performance of graphdiyne (GDY) in electrochemical sensing, carbon nanotubes (CNTs) were grown in situ to construct three-dimensional nanoarchitectures of GDY-CNTs composites. GDY-CNTs showed superior electrochemical properties and detection response to MP when compared with GDY, as the in situ growth of CNTs significantly increased the electrode surface area and enhanced the electron transfer process. GDY-CNTs were successfully used to construct electrochemical sensors for methyl parathion (MP).
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States.
In this work, we describe a computational tool designed to determine the local dielectric constants (ε) of charge-neutral heterogeneous systems by analyzing dipole moment fluctuations from molecular dynamics (MD) trajectories. Unlike conventional methods, our tool can calculate dielectric constants for dynamically evolving selections of molecules within a defined region of space, rather than for fixed sets of molecules. We validated our approach by computing the dielectric constants of TIP3P water nanospheres, achieving results consistent with literature values for bulk water.
View Article and Find Full Text PDFJ Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
Nucleoside triphosphate (NTP)-dependent protein assemblies such as microtubules and actin filaments have inspired the development of diverse chemically fueled molecular machines and active materials but their functional sophistication has yet to be matched by design. Given this challenge, we asked whether it is possible to transform a natural adenosine 5'-triphosphate (ATP)-dependent enzyme into a dissipative self-assembling system, thereby altering the structural and functional mode in which chemical energy is used. Here we report that FtsH (filamentous temperature-sensitive protease H), a hexameric ATPase involved in membrane protein degradation, can be readily engineered to form one-dimensional helical nanotubes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, CHINA.
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!