Electrochemical and electrochromic properties of layer-by-layer films from WO(3) and chitosan.

J Phys Chem B

Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto (SP), Brazil.

Published: July 2005

The design of improved materials for electrochromic applications now involves extensive use of novel composites, thus requiring an investigation of the mechanisms responsible for electrochromism in these structures. Using films of WO(3) and chitosan produced with the layer-by-layer (LBL) technique, we demonstrate that characteristics such as the number of electrochemical active sites (K), the molar absorption coefficient (epsilon), and the electrochromic efficiency (eta) can be obtained using the quadratic logistic equation (QLE). The complexation ability between chitosan and WO(3) allowed the growth of visually uniform multilayers of the composite, with the same amount of material adsorbed in each deposition cycle. By fitting the absorbance changes (DeltaA) resulting from the electronic intervalence transfer from W(V) to W(VI) sites in four-bilayer LBL films of WO(3)/chitosan and WO(3)/chitosan with ethanol in the precursor dispersion, K was estimated to be ca. 5.5 x 10(-8) mol cm(-2) and 3.6 x 10(-8) mol cm(-2), respectively. The molar absorption coefficient and electrochromic efficiency vary with the charge injected because of the saturation of W(V) sites and the dissipation and feedback effects implicit in the QLE associated with ion-network interactions, such as the proton trapping effect. The LBL film of WO(3)/chitosan showed a smaller molar absorption coefficient and electrochromic efficiency than that containing ethanol because of a greater proton trapping effect for the LBL film with no ethanol. This enhanced trapping effect was seen as a decrease in the electronic flux involved in intervalence transfer in electrochemical impedance spectroscopy experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0504165DOI Listing

Publication Analysis

Top Keywords

molar absorption
12
absorption coefficient
12
electrochromic efficiency
12
films wo3
8
wo3 chitosan
8
intervalence transfer
8
10-8 mol
8
mol cm-2
8
coefficient electrochromic
8
proton trapping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!