Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrodeposited nanoporous ZnO/eosin Y hybrid films have been investigated in view of their potential applications in dye-sensitized solar cells and supercapacitors. Intensity-modulated photocurrent spectra were measured at different electrode potentials at films of different thicknesses. It was found that the results represent either the RC constant of the cell and surface recombination of photogenerated holes with electrons or the diffusion of photogenerated electrons and are dependent on the electron concentration in the ZnO, which is influenced by the film thickness, the electrode potential, and the light intensity. The results suggest that the porosity of the electrodeposited ZnO increases with the film thickness and the films therefore consist of two parts, a less porous part deposited in the first few minutes that exhibits field-driven electron transport and a more porous outer part where electron transport is by diffusion. The results are supported by frequency-dependent capacitance measurements, which also show that the material is suitable for supercapacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp051394p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!