The spectral properties of composite materials based on small particles under 1D, 2D, and 3D size confinement are described using a combination of dispersive internal field and effective media theory approaches. Calculations performed for a number of crystalline materials have shown that the peak position and intensity of the vibrational band of the material under conditions of 1D, 2D, and 3D size confinement are changed, whereas the bandwidth of the band remains the same. In the case of 3D confinement, the peak position of the spectrum of isolated "mesoparticles" (epsilon(meso)(2)) appears to be very close to the intrinsic frequency of the lattice vibrations, calculated from the elastic constants of this crystal, as well as to the Fröhlich's frequency. The largest shift (Deltanu) of the peak frequency, nu(max), from the bulk value is obtained in the case of 1D confinement when the peak position is practically coincident with the frequency of the longitudinal optical phonon (nu(LO)). These shifts are the result of intermolecular interactions, including both resonant and induced resonant dipole-dipole interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp040543lDOI Listing

Publication Analysis

Top Keywords

size confinement
12
peak position
12
internal field
8
small particles
8
case confinement
8
confinement peak
8
confinement
5
field absorption
4
absorption spectra
4
spectra small
4

Similar Publications

Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation.

Adv Mater

January 2025

Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.

3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable.

View Article and Find Full Text PDF

This study introduces advancements in electrohydrodynamic (EHD) pumps and the development of a 3D-printable anti-swelling organohydrogel for soft robotics. Using digital light processing (DLP)technology, precise components with less than 1% size variation are fabricated, enabling a unique manifold pump array. This design achieves an output pressure of 90.

View Article and Find Full Text PDF

Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.

View Article and Find Full Text PDF

Optimal CO intake in metastable water film in mesoporous materials.

Nat Commun

December 2024

Department of Civil and Environmental Engineering, and Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hong Kong, China.

The feasibility of carbon mineralization relies on the carbonation efficiency of CO-reactive minerals, which is largely governed by the water content and state within material mesopores. Yet, the pivotal role of confined water in regulating carbonation efficiency at the nanoscale is not well understood. Here, we show that the maximum CO intake occurs at an optimal relative humidity (RH) when capillary condensation initiates within the hydrophilic mesopores.

View Article and Find Full Text PDF

A database for the outer sizes of tropical cyclones over the Middle Americas.

Data Brief

December 2024

Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.

Tropical cyclones (TCs) are catastrophic phenomena that constantly threaten populations settled in the tropics. Their direct effects (strong winds, storm surges, and intense precipitation) are confined near the TC center. On the other hand, the indirect effects are due to extreme rainfall events associated with rainbands distant from the TC center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!