Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The adsorption of both (L- and D-) enantiomeric forms of cysteine on the silver electrode surface was studied by surface-enhanced Raman scattering spectroscopy (SERS) as a function of electrode potential and pH value of the solution. It was demonstrated that at potentials more positive than -0.7 V (for pH 3) or -0.8 V (for pH 2 or lower), in acidic environment L-cysteine molecules are adsorbed mainly as P(H) (gauche) conformer, in zwitterionic form with the COO- groups close to the surface. At more negative potentials, NH3+ groups deprotonate at the surface with simultaneous weakening of the interaction of the carboxylic groups with the surface. Spectroscopic evidence for at least partial protonation of the COO- groups at strongly acidic solutions was given by observing the C=O stretching band at frequency lowered by about 30 cm(-1) in comparison with that observed for crystalline cysteine hydrochloride. It points to the considerable enhancement of the strength of hydrogen bonds and may be ascribed to the formation of cyclic L-cysteine dimers at the electrode surface. In neutral and alkaline solutions, adsorbed L-cysteine molecules have deprotonated amino groups at wide potential range. Similar spectroelectrochemical experiments were performed for D-cysteine and for a racemic mixture of D,L-cysteine. As expected, results for D-cysteine were similar to those for L-cysteine. However, for racemic mixture at acidic pH, the spectral effects corresponding to potential-induced transition from adsorbed zwitterions to neutral molecule were considerably smaller. This effect was discussed in terms of stereoselective dimerization of cysteine molecule at the electrode surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0454523 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!