The structure of hexanuclear 6-methyl-2-pyridinethiolato copper(I) [Cu6(6-mpyt)(6)] crystals has been studied by the X-ray diffraction analysis. These crystals show highly efficient luminescence whose color changes drastically from red to green-blue with lowering temperature from room temperature (RT) to liquid nitrogen temperature (LNT). This is a new example of luminescence thermochromism for hexanuclear copper(I) cluster compounds. Two relaxed luminescence bands appear predominantly: one (CC-band), red luminescence appearing in the lower-energy region around 1.8 eV at higher temperature, is assigned to the transition between intramolecular orbitals (MO) of a Cu cluster center (CC), and the other (CT-band), green-blue luminescence appearing at the higher energy side of 2.6 eV than the CC-band at lower temperature, is assigned to a charge transfer (CT) transition from the CC-MO to a ligand MO. Additionally, the CT band can be deconvoluted to two subbands CT(L) and CT(H). The intensities of the CC- and the CT-bands change complementarily with temperature via a thermal activation process, giving the thermochromism. All of these band shapes can be fitted by a Gaussian function, and their widths are fairly large obeying the hyperbolic cotangent law. These features reflect our system to be a strong electron-lattice coupling one. The relaxation process of the photoexcited states is discussed in terms of a configuration coordinate model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0446985DOI Listing

Publication Analysis

Top Keywords

luminescence thermochromism
8
thermochromism hexanuclear
8
hexanuclear 6-methyl-2-pyridinethiolato
8
6-methyl-2-pyridinethiolato copperi
8
luminescence appearing
8
temperature assigned
8
luminescence
6
temperature
6
structure study
4
study luminescence
4

Similar Publications

Stretchable Thermochromic Fluorescent Fibers Based on Self-Crystallinity Phase Change for Smart Wearable Displays.

Polymers (Basel)

December 2024

Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

Smart fibers with tunable luminescence properties, as a new form of visual output, present the potential to revolutionize personal living habits in the future and are receiving more and more attention. However, a huge challenge of smart fibers as wearable materials is their stretching capability for seamless integration with the human body. Herein, stretchable thermochromic fluorescent fibers are prepared based on self-crystallinity phase change, using elastic polyurethane (PU) as the fiber matrix, to meet the dynamic requirements of the human body.

View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Enabling Multicolor Information Encryption: Oleylammonium-Halide-Assisted Reversible Phase Conversion between CsPbX and CsPbX Nanocrystals.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Chemistry and Chemical Engineering, Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, China.

Recently, halide perovskites have been recognized for their thermochromic characteristics, showing significant potential in information encryption applications. However, the limited luminescence color gamut hinders the encryption of complex multicolor information. Herein, for the first time, multicolor thermochromic perovskites with luminescence covering the entire visible spectrum have been designed.

View Article and Find Full Text PDF

Aggregation-Induced Emission-Active Cyanostilbene-Based Liquid Crystals: Self-Assembly, Photophysical Property, and Multiresponsive Behavior.

Molecules

December 2024

Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

Cyanostilbene (CS)-related conjugated groups can be considered as dual functional groups of AIEgen and mesogen to construct photoluminescent liquid crystals, and it is essential to study the relationship between their molecular structures and compound properties systematically. In this paper, we designed and synthesized linear and bent-shaped CS derivatives containing ester- and amide-connecting groups and different substituted numbers of alkoxy tails. Their phase behaviors and photophysical properties were investigated in depth.

View Article and Find Full Text PDF

Anti-counterfeiting technology plays an indispensable role in the high-tech field and various critical application areas. However, traditional anti-counterfeiting approaches currently in widespread use are too simplistic and easily replicated or forged, while advanced technologies with multiple anti-counterfeiting functions remain in the developmental stage. This study presents a novel multiple anti-counterfeiting technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!