Hydrogen storage properties of mutiwalled carbon nanotubes (MWCNTs) with Ni nanoparticles were investigated. The metal nanoparticles were dispersed on MWCNTs surfaces using an incipient wetness impregnation procedure. Ni catalysts have been known to effectively dissociate hydrogen molecules in gas phase, providing atomic hydrogen possible to form chemical bonding with the surfaces of MWCNTs. Hydrogen desorption spectra of MWCNTs with 6 wt % of Ni nanoparticles showed that approximately 2.8 wt % hydrogen was released in the range of 340-520 K. In Kissinger's plot to evaluate the nature of interaction between hydrogen and MWCNTs with Ni nanoparticles, the hydrogen desorption activation energy was measured to be as high as approximately 31 kJ/mol.H(2), which is much higher than the estimates of pristine SWNTs. C-H(n)() stretching vibrations after hydrogenation in FTIR further supported that hydrogen molecules were dissociated when bound to the surfaces of MWCNTs. During cyclic hydrogen absorption/desorption, there was observed no significant decay in hydrogen desorption amount. The hydrogen chemisorption process facilitated by Ni nanopaticles could be suggested as an effective reversible hydrogen storage method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp044727b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!