The orientation, structure, and energetics of the vapor/acetone-water interface are studied with sum frequency generation vibrational spectroscopy (SFG-VS). We used the polarization null angle (PNA) method in SFG-VS to accurately determine the interfacial acetone molecule orientation, and we found that the acetone molecule has its C=O group pointing into bulk phase, one CH3 group pointing up from the bulk, and the other CH3 group pointing into the bulk phase. This well-ordered interface layer induces an antiparallel structure in the second layer through dimer formation from either dipolar or hydrogen bond interactions. With a double-layer adsorption model (DAM) and Langmuir isotherm, the adsorption free energies for the first and second layer are determined as deltaG degrees (ads,1) = - 1.9 +/- 0.2 kcal /mol and deltaG degrees (ads,2) = - 0.9 +/- 0.2 kcal /mol, respectively. Since deltaG degrees (ads,1) is much larger than the thermal energy kT = 0.59 kcal /mol, and deltaG degrees (ads,2) is close to kT, the second layer has to be less ordered. Without either strong dipolar or hydrogen bonding interactions between the second and the third layer, the third layer should be randomly thermalized as in the bulk liquid. Therefore, the thickness of the interface is not more than two layers thick. These results are consistent with previous MD simulations for the vapor/pure acetone interface, and undoubtedly provide direct microscopic structural evidences and new insight for the understanding of liquid and liquid mixture interfaces. The experimental techniques and quantitative analysis methodology used for detailed measurement of the liquid mixture interfaces in this report can also be applied to liquid interfaces, as well as other molecular interfaces in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp050188e | DOI Listing |
Materials (Basel)
December 2024
Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego Street 16, 90-537 Lodz, Poland.
In recent years, the search for more sustainable fillers for elastomeric composites than silica and carbon black has been underway. In this work, silanized starch was used as an innovative filler for elastomeric composites. Corn starch was chemically modified by silanization (with n-octadecyltrimethoxysilane) via a condensation reaction to produce a hydrophobic starch.
View Article and Find Full Text PDFNanotechnology
January 2025
School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Vietnam.
In this study, the mixture of zinc acetate dehydrates and boric acid was pyrolyzed in zeolite X to prepare novel B/ZnO/zeolite nanocomposites for the enhanced removal of tartrazine (TA) in aqueous environment. The composites are porous material with a relatively large pore size (35.3 nm).
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2025
Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
The inflammasome-forming NOD-like receptor containing pyrin-3 (NLRP3) protein is a critical player in the innate immune responses to cellular danger signals. New structural data of NLRP3 provide a framework to probe the conformational impact of nucleotide binding. In this study, microsecond molecular dynamics (MD) simulations were used to detail information on the unique structural conformations adopted by NLRP3 with ATP or ADP binding.
View Article and Find Full Text PDFACS Catal
November 2024
Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz 8010, Austria.
Enzyme immobilization into carrier materials has broad importance in biotechnology, yet understanding the catalysis of enzymes bound to solid surfaces remains challenging. Here, we explore surface effects on the catalysis of sucrose phosphorylase through a fusion protein approach. We immobilize the enzyme via a structurally rigid α-helical linker [EAK] of tunable spacer length due to the variable number of pentapeptide repeats used ( = 6, 14, 19).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!