The interaction of ethanol with phospholipids was studied in bicelles at a physiologically relevant ethanol concentration of 20 mM and a lipid content of 14 wt % by high-resolution NMR. Transient association of ethanol with magnetically aligned bicelles imparts a small degree of anisotropy to the solute. This anisotropy allows detection of residual (1)H-(1)H and (1)H-(13)C dipolar couplings, which are superimposed on scalar couplings. Residual (2)H NMR quadrupole splittings of isotope-labeled ethanol were measured as well. The analysis of residual tensorial interactions yielded information on the orientation and motions of ethanol in the membrane-bound state. The fraction of phosphatidylcholine-bound ethanol was determined independently by gas chromatography and NMR. About 4% of ethanol is bound to phosphatidylcholine at a bicelle concentration of 14 wt % at 40 degrees C. Free and bound ethanol are in rapid exchange. The lifetime of ethanol association with phosphatidylcholine membranes is of the order of a few nanoseconds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp044980b | DOI Listing |
Parasite
January 2025
Université de Franche-Comté, CNRS, Chrono-environnement, 25000 Besançon, France.
Angiostrongylus cantonensis, commonly known as the rat lungworm, causes Eosinophilic meningitis in humans. Our study aimed to investigate the prevalence and distribution of this parasite in rats in Haiti. Rats were trapped at 8 sites, 7 in Artibonite (rural region) and one in an urban area of Port-au-Prince.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
We successfully synthesize monodisperse sulfhydryl-modified mesoporous organosilica nanospheres (MONs-SH) via one-step hydrolytic condensation, where cetyltrimethylammonium chloride and dodecyl sulfobetaine are employed as dual-template agents with (3-mercaptopropyl)triethoxysilane and 1,2-bis(triethoxysilyl)ethane as the precursors and concentrated ammonia as the alkaline catalyst. The prepared MONs-SHs deliver a large specific surface area (729.15 m g), excellent monodispersity, and homogeneous particle size.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Communication and Information Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
The SnO@BiO core-shell heterojunction structure was designed and synthesized via a hydrothermal method, and the structure and morphology of the synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Based on the conclusions from XRD and SEM, it can be observed that as the hydrothermal temperature increases, the content of BiO coated on the surface of SnO spheres gradually increases, and the diameter of BiO nanoparticles also increases. At a hydrothermal temperature of 160 °C, the SnO spheres are fully coated with BiO nanoparticles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States of America.
Although performance enhancements due to trace Fe incorporation into Ni catalysts for the oxygen evolution reaction (OER) have been well documented, the effects of trace versus bulk Fe incorporation into Ni catalysts for the ethanol oxidation reaction (EOR)─a promising anodic alternative to OER─are unclear. Herein, we perform extensive cyclic voltammetry experiments on Ni-based thin films to show that trace Fe incorporation from electrolyte impurities has a minimal impact on EOR performance, while codeposited Fe significantly suppresses catalytic current (by half at 1.5 V).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!