AI Article Synopsis

  • The study investigates how nitrogen monoxide (NO) interacts with nanosized Ru(Pd,Pt)-doped SnO(2) using various measurement techniques.
  • Three key reaction steps are identified: forming oxygen vacancies in the semiconductor, single-ionizing these vacancies to inject electrons, and transferring electrons to the metal dopants.
  • This electron transfer leads to more oxygen vacancies and reduces the transition metals' oxidation states, which significantly alters the electrical resistance compared to undoped SnO(2).

Article Abstract

The mechanism of NO interaction with nanosized Ru(Pd,Pt)-doped SnO(2) was studied by electron paramagnetic resonance, Mössbauer, and electric resistance measurements. Three steps were proposed for the reaction between the semiconductor oxide and the gaseous component: (i) the formation of bielectronic oxygen vacancies (V(o)) in SnO(2); (ii) their single-ionization (V(o)(*)) with injection of electrons into the SnO(2) conduction band; (iii) the subsequent transfer of electrons from V(o)(*) to [Ru(Pd,Pt)](4+). The last process induces the formation of further oxygen vacancies which reduce the transition metal centers to lower oxidation states; the redox processes is enhanced and the electrical resistance in transition metal-doped SnO(2) is stronger modified with respect to the undoped material.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp040740kDOI Listing

Publication Analysis

Top Keywords

interaction nanosized
8
electron paramagnetic
8
paramagnetic resonance
8
resonance mössbauer
8
oxygen vacancies
8
sno2
5
nanosized ru-
4
ru- pd-
4
pd- pt-doped
4
pt-doped sno2
4

Similar Publications

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

Plastics play an essential role in modern fisheries and their degradation releases micro- and nano-sized plastic particles which further causes ecological and human health hazards through various environmental contamination pathways and toxicity mechanisms, which can cause respiratory problems, cancer, reproductive toxicity, endocrine disruption and neurological effects in humans. This study utilized various bioinformatics tools through multi-step computational analyses to investigate the interactions between prevalent fisheries microplastics and the key protein receptor acetylcholinesterase (AChE), which is associated with neurotoxicity, as it can interfere with nerve impulses and muscle control. Our results indicate that the binding of seven polymers within AChE's active site, with dodecane and polypropylene exhibited highest affinity with hydrogen bonding were observed through Molecular docking of different program (PyRx) and servers (CB-Dock, eDock) then the stability of AChE-dodecane and AChE-polypropylene complexes were observed through MD simulations for 100 ns.

View Article and Find Full Text PDF

Exploring a Novel Adsorbent for CO Capture and Gas Separation.

ACS Appl Mater Interfaces

January 2025

Université de Caen Normandie, ENSICAEN, CNRS, LCS, Laboratoire Catalyse et Spectrochimie, Caen 14000, France.

The urgent need to mitigate carbon emissions has spurred research into small-pore zeolites as cost-effective options for CO capture by solid adsorbents, particularly in postcombustion and biogas separation applications. In this study we investigate levyne (LEV-type) zeolite, a largely unexplored material for CO adsorption, as a novel adsorbent for CO capture and gas separation. Using seed-assisted synthesis approaches and different synthesis conditions, nanosized and micron-sized LEV zeolites were synthesized and characterized in terms of synthesis pathways, morphology, crystal size, and chemical composition.

View Article and Find Full Text PDF

Bacterial Nanovesicles as Interkingdom Signaling Moieties Mediating Pain Hypersensitivity.

ACS Nano

January 2025

Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.

Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.

View Article and Find Full Text PDF

Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!