A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. | LitMetric

Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light.

J Phys Chem B

Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland.

Published: March 2005

Doped TiO2 samples using different preparative procedures were synthesized using either urea or thiourea leading to N- or S-doped TiO2. Photocatalytic peroxidation and oxidation (mineralization) of phosphatidylethanolamine (PE) lipid with doped TiO2 were carried out under light irradiation lambda > 410 nm. The formation of conjugated double bonds in PE molecules was followed to detect the formation of peroxy radicals (peroxidation index) under light excitation (lambda > 410 nm) when doped TiO2 was used. The kinetics of CO2 production was monitored during the mineralization of PE. Colored TiO2 powders were studied in detail by different and complementary physicochemical techniques. The band gap energies of colored TiO2 were determined by diffuse reflectance spectroscopy (DRS). The visible absorption shoulder of TiO2 was observed to follow Urbach's law. The variation of the transient decay after 354 nm laser pulse excitation does not correlate with the different N- and S-TiO2 doping levels introduced by the addition of urea or thiourea. This suggests that the states (recombination centers or traps) introduced by the doping are not effective in varying the decay kinetics within the nanosecond and microsecond time scale. Elemental analysis shows comparable amounts of S- and N-doping of TiO2 when thiourea is used as dopant. X-ray diffraction reveals no rutile in S-TiO2 samples heated to 600 degrees C, suggesting that the addition of sulfur precludes rutilization during sample crystallization. X-ray photoelectron spectroscopy (XPS) of the S-TiO2 samples confirms the preferential localization of S on the 20 topmost layers of S-TiO2 upon calcination at 500 degrees C for 2 h.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp044979cDOI Listing

Publication Analysis

Top Keywords

doped tio2
16
tio2
9
urea thiourea
8
lambda 410
8
colored tio2
8
s-tio2 samples
8
preparation testing
4
testing characterization
4
doped
4
characterization doped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!