Internal photoemission (IPE) studies were performed on molecular diodes in which the alkanedithiol [HS(CH(2))(n)SH, n = 8, 10] molecular layer is sandwiched between Au and GaAs electrodes. The results are compared to those from Au-GaAs Schottky diodes. An exponential energy dependence in the IPE yield was observed for the molecular diodes, in contrast to the quadratic energy dependence characteristic of metal-semiconductor Schottky diodes, indicating that Au is not the source of electrons in the IPE process in the molecular diodes. From the GaAs dopant density dependence, we also can rule out GaAs being the source of these electrons. Compared with the results of cluster electronic structure calculations, we suggest that IPE is probing the occupied levels of GaAs-molecular interfacial states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp044246sDOI Listing

Publication Analysis

Top Keywords

molecular diodes
12
probing occupied
8
molecular layer
8
schottky diodes
8
energy dependence
8
source electrons
8
diodes
6
molecular
5
occupied states
4
states molecular
4

Similar Publications

The influence of variations in indium concentration and temperature on threshold current density (J) in In Ga As/GaAs ( = 0, 0.8 and 0.16) quantum dot (QD) laser diodes - synthesized via molecular beam epitaxy (MBE) with three distinct indium concentrations on GaAs (001) substrates - was meticulously examined.

View Article and Find Full Text PDF

We detail here the general principle of a self-adaptive oscillator in which the intertwined operation of a 100-m-long active optical resonator and a standard semiconductor laser mutually coupled by stimulated Brillouin scattering offers an ultimate high spectral purity. Single frequency operation of this self-adaptive photonic oscillator is achieved without any servo locking or stabilization electronics. In free running operation, this principle leads to a Lorentzian linewidth of 40 mHz and a Flicker noise linewidth of 200 Hz for 0.

View Article and Find Full Text PDF

This study presents a novel optoporation technique using a titanium-coated TiO microstructure (TMS) device activated by an infrared diode laser for highly efficient intracellular delivery. The TMS device, fabricated with 120 nm titanium coating on a titanium dioxide (TiO) microstructure containing microneedles (height ∼2 μm and width ∼4.5 μm), demonstrates enhanced biocompatibility and thermal conductivity compared to the conventional TiO microstructure (MS).

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Efficient harvesting of triplet excitons multiple fast TTA up-conversion and high-lying reverse intersystem crossing channels for efficient blue fluorescent organic light-emitting diodes.

Chem Sci

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China

The efficient harvesting of triplet excitons is key to realizing high efficiency blue fluorescent organic light-emitting diodes (OLEDs). Triplet-triplet annihilation (TTA) up-conversion is one of the effective triplet-harvesting strategies. However, during the TTA up-conversion process, a high current density is necessary due to the competitive non-radiative triplet losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!