Prolonged hydrogenation of C(60) molecules by reaction with H(2) at elevated temperature and pressure results in fragmentation and collapse of the fullerene cage structure. However, fragments can be preserved by immediate termination of dangling bonds by hydrogen. Here we demonstrate that not only fullerene fragments but also hydrogenated fragmented fullerenes (e.g., C(58)H(40) and C(59)H(40)) can be synthesized in bulk amount by high-temperature hydrogenation of C(60). We confirm successful synthesis of these species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry and complete speciation of the resultant complex fullerene mixtures by high-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp050364jDOI Listing

Publication Analysis

Top Keywords

hydrogenation c60
8
mass spectrometry
8
synthesis c59hx
4
c59hx c58hx
4
c58hx fullerenes
4
fullerenes stabilized
4
stabilized hydrogen
4
hydrogen prolonged
4
prolonged hydrogenation
4
c60 molecules
4

Similar Publications

Here, we investigate the interactions between five representative gaseous analytes and two poly(ionic liquids) (PILs) based on the sulfopropyl acrylate polyanion in combination with the alkylphosphonium cations, P and P, and their nanocomposites with fullerenes (C, C) to reveal the potential of PILs as sensitive layers for gas sensors. The gaseous analytes were chosen based on their molecular size (all of them containing two carbon atoms) and variation of functional groups: alcohol (ethanol), nitrile (acetonitrile), aldehyde (acetaldehyde), halogenated alkane (bromoethane), and carboxylic acid (acetic acid). The six variations of PILs-PSPA (), PSPA + C ( + C), PSPA + C ( + C), and PSPA (), PSPA + C ( + C), PSPA + C ( + C)-were characterized by UV-vis and Raman spectroscopy, and their interactions with each gaseous analyte were studied using electrochemical impedance spectroscopy.

View Article and Find Full Text PDF

The electrochemical nitrogen reduction reaction (NRR) has been regarded as a green and promising alternative to the traditional Haber-Bosch process. However, the high bond energy (940.95 kJ mol) of the NN triple bond hinders the adsorption and activation of N molecules, which is a critical factor restricting the catalytic performance of catalysts and their large-scale applications.

View Article and Find Full Text PDF

Large-Area Transfer of Nanometer-Thin C Films.

ACS Nano

January 2025

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

Fullerenes, with well-defined molecular structures and high scalability, hold promise as fundamental building blocks for creating a variety of carbon materials. The fabrication and transfer of large-area films with precisely controlled thicknesses and morphologies on desired surfaces are crucial for designing and developing fullerene-based materials and devices. In this work, we present strategies for solid-state transferring C molecular nanometer-thin films, with dimensions of centimeters in lateral size and thicknesses controlled in the range of 1-20 nm, onto various substrates.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

The performance of narrow-bandgap (NBG) perovskite solar cells (PSCs) is limited by the severe nonradiative recombination and carrier transport barrier at the electron selective interface. Here, we reveal the importance of the molecular orientation for effective defect passivation and protection for Sn at the perovskite/C interface. We constructed an internally self-anchored dual-passivation (ISADP) layer, where the orientation of PCBM can be significantly enhanced by the interaction between ammonium and carbonyl groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!