Transient grating experiments performed with evanescent fields resulting from total internal reflection at an interface between a polar absorbing solution and an apolar transparent solvent are described. The time evolution of the diffracted intensity was monitored from picosecond to millisecond time scales. The diffracted signal originates essentially from two density phase gratings: one in the absorbing phase induced by thermal expansion and one in the transparent solvent due to electrostriction. A few nanoseconds after excitation, the latter grating is replaced by a thermal grating due to thermal diffusion from the absorbing phase. The speed of sound and the acoustic attenuation measured near the interface are found to be essentially the same as in the bulk solutions. However, after addition of a surfactant in the polar phase, the speed of sound near the interface differs substantially from that in the bulk with the same surfactant concentration. This effect is interpreted in terms of adsorption at the liquid/liquid interface. Other phenomena, which are not observed in bulk experiments, such as acoustic echoes and a fast oscillation of the signal intensity, are also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp045133b | DOI Listing |
Polymers (Basel)
November 2024
"Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
Optical filters are essential components for a variety of applicative fields, such as communications, chemical analysis and optical signal processing. This article describes the preparation and characterization of a new optical filter made of polyvinyl alcohol and incremental amounts of crystal violet. By using distinct solvents (HO, dimethyl sulfoxide (DMSO) and HO) to obtain the dyed polymer films, new insights were gained into the pathway that underlies the possibility of tailoring the material's optical performance.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Fiber and Particle Engineering Research Unit, University of Oulu, 90014 Oulu, Finland.
Cellulose-nanomaterial-derived films are promising platforms for engineering advanced substrates for printed electronics. However, they are highly susceptible to water and humidity, which limit their wide application. To overcome these drawbacks, cellulose nanoworms (distinct hydrophobized cellulose nanomaterials) were introduced in this study as sustainable coatings to enhance the water resistance of cellulose nanofiber (CNF) films.
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra 411004, India. Electronic address:
Tributyl phosphate (TBP), an organophosphate ester (OPE), is heavily used as a solvent in chemical industries, a plasticizer, and to extract radioactive molecules. Thus, widespread uses of TBP in industrialized countries led to the release of TBP and its metabolites, dibutyl phosphate (DBP) and monobutyl phosphate (MBP), in the environment and were detected in human samples. Accumulating these OPEs over time in humans and aquatic animals may develop toxicological effects.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Chemistry & Chemical Engineering College, Northwest Normal University, Key Lab of Polymer Materials of Ministry of Education of Ecological Environment, Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, PR China.
Conductive hydrogels have been considered ideal candidate materials for fabricating human-motion sensors due to their combination properties of electronic and tissue-like soft nature and the similar functions of human skin with mechanical and sensory properties. However, the perfect integration of multiple functionalities such as environmentally tolerant, stretchable, self-adhesive, self-healing, transparent, high sensitivity, and rapid response in one system (all-in-one) is still a significant challenge. Herein, a novel ionic conductive hydrogel platform with excellent comprehensive performance through multiple dynamic interactions was prepared by employing [BMIm]BF/glycerol/water ternary solvent system.
View Article and Find Full Text PDFCont Lens Anterior Eye
November 2024
Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China. Electronic address:
Purpose: To explore the in vitro killing effect of water-soluble berberine and lipid-soluble niclosamide against ocular Demodex folliculorum.
Methods: Demodex with good vigor were collected from patients' eyelashes. These mites were randomly distributed into different groups with 20 mites in each group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!