The excited-state properties of the layered La[Ag(CN)(2)](3) and La[Au(CN)(2)](3) systems have been examined and compared with mixed-metal systems of varying metal ratios such as La[Ag(0.78)Au(0.22)(CN)(2)](3), La[Ag(0.55)Au(0.45)(CN)(2)](3), La[Ag(0.33)Au(0.67)(CN)(2)](3), and La[Ag(0.19)Au(0.81)(CN)(2)](3). We have found that these mixed-metal systems luminesce quite strongly at room temperature at an energy that is tunable and depends on the Au:Ag stoichiometric ratio. The emission energy of the mixed-metal samples lies between those of the pure Au and Ag systems. This provides evidence that the excited states responsible for this emission are delocalized over the Ag and Au centers. The strong luminescence of the mixed-metal systems at ambient temperatures is in stark contrast to the weak luminescence behavior of pure La[Au(CN)(2)](3) and La[Ag(CN)(2)](3) samples, which makes the mixed-metal systems more viable than the pure systems for practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp045868gDOI Listing

Publication Analysis

Top Keywords

mixed-metal systems
16
systems
8
pure systems
8
mixed-metal
5
tunable photoluminescence
4
photoluminescence closed-shell
4
closed-shell heterobimetallic
4
heterobimetallic au-ag
4
au-ag dicyanide
4
dicyanide layered
4

Similar Publications

One use of CO as a starting material in organic transformations is in the synthesis of cyclic carbonates and polycarbonates. Due to the low reactivity of CO, this transformation must be carried out in the presence of an efficient catalyst. Although several catalytic systems have been developed in the past decade, reducing the CO pressure at which the reaction is carried out remains one of the main challenges of the process.

View Article and Find Full Text PDF

Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.

View Article and Find Full Text PDF

Depending on their bandgaps, mixed metal layered chalcogenides are potential candidates for thermoelectric and photovoltaic applications. Herein, we reported the exploratory synthesis of Sr-Zr-Cu- ( = S/Se) systems, resulting in the identification of two novel quaternary chalcogenides: SrZrCuS and SrZrCuSe. These isoelectronic compounds (SrZrCu) crystallized in two different structural types.

View Article and Find Full Text PDF

A first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF.

View Article and Find Full Text PDF
Article Synopsis
  • Molybdenum trioxide (α-MoO) is an affordable alternative to platinum for hydrogen evolution reactions (HER), but it has problems with low electrical conductivity and few active sites.
  • This study presents a new approach to improve α-MoO by creating a composite with nickel through a simple room-temperature synthesis and thermal annealing process, resulting in different mixed metal oxides.
  • The composite formed at 400°C (MoO-400) significantly outperforms conventional α-MoO, achieving a fivefold increase in HER current density due to its improved structure and the beneficial interactions between nickel oxide and molybdenum.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!