Potential step measurement is carried out on single beads of spherical nickel hydroxide to determine the proton diffusion coefficient (D) and concentration of the effective proton vacancies (C). The semi-infinite diffusion equation for the initial stage and the finite diffusion equation for the long-term of the current response to potential step are used for deducing the D and C values. The diffusion coefficients deduced from short and long-term current responses are in the order of magnitude 10(-7) and 10(-10) cm2 s(-1), respectively. The sum of the effective proton vacancy concentrations associated with the two D values comes out to be equal within experimental error to the effective proton vacancy concentration converted from the released electricity during discharge. A dual structure model is proposed to interpret the above-mentioned findings, featuring densely packed grains within which proton diffusion is slow and an inter-grain matrix where proton diffusion is fast. With this model the huge difference (about 6 orders of magnitude) in D values reported in the literature as well as the controversy of the dependence of diffusion coefficient on the state of charge can be largely rationalized. This dual structure model is supported by SEM and AFM observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp045888iDOI Listing

Publication Analysis

Top Keywords

proton diffusion
16
dual structure
12
structure model
12
potential step
12
effective proton
12
nickel hydroxide
8
diffusion coefficient
8
diffusion equation
8
long-term current
8
proton vacancy
8

Similar Publications

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

High-Performance Proton Exchange Membrane with Vertically Aligned Montmorillonite Nanochannels.

Small

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.

The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.

View Article and Find Full Text PDF

Diagnostic performance of multiparametric nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating IDH mutation status.

Clin Radiol

December 2024

Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China. Electronic address:

Aim: To evaluate the diagnostic performance of nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating isocitrate dehydrogenase (IDH) mutation status.

Materials And Methods: Patients with diagnoses confirmed by postoperative pathology were enrolled. Quantitative parameters, including the relative amide proton transfer-weighted (rAPTW), relative cerebral blood flow (CBF), and apparent diffusion coefficient (ADC) were applied to grade gliomas and correlate IDH mutation status.

View Article and Find Full Text PDF

Layered VO·6HO is a promising candidate for aqueous zinc batteries (AZBs) but with moderate electrochemical performances. Herein, the charge storage properties of VO·6HO are markedly improved by building up the heterointerface on its surface using amorphous molybdenum trioxide as the heteromaterial. The amorphous molybdenum trioxide functioning as the proton reservoir enables the proton-involved electrochemical reactions and induces the formation of a built-in electric field along the [001] orientation at the heterointerface constructed by the (001) plane of VO·6HO, which could provide new diffusion pathways and extra sites for ion storage.

View Article and Find Full Text PDF

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!