Electrolithographic investigations of the hydrophilic channels in Nafion membranes.

J Phys Chem B

Departments of Chemical Engineering, of Physics, and of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.

Published: March 2005

Nafion membranes are used as semisolid electrolytes in methanol and hydrogen fuel cells. The ion conduction takes place through those hydrophilic channels in the Nafion that can provide continuous pathways through the membrane. There is as yet limited information about the density, the size, and the shape of these channels. We have developed two electrochemical methods of visualizing the pore structure which involve the creation of metal lithographs using the membrane pores as templates. In the experiments, the membrane is supported on a flat solid surface on one side, and is in contact with an electrolyte on the other side. Using hydrogen-terminated n-doped Si(111), we deposited gold from an electrolyte containing a gold salt. The Au ions traverse the membrane through the pores, reach the silicon surface, and are spontaneously reduced. A metallic Au deposit is formed on the silicon surface, at the base of the hydrophilic channel. The Au deposits are imaged after the membrane is dissolved. Another method involves supporting the membrane on a Pt surface and depositing silver wires through the hydrophilic channels of the membrane. The scanning electron microscope pictures of these wires provide an image of the size and the shape of the hydrophilic channels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0457848DOI Listing

Publication Analysis

Top Keywords

hydrophilic channels
16
channels nafion
8
nafion membranes
8
size shape
8
membrane pores
8
silicon surface
8
membrane
7
hydrophilic
5
channels
5
electrolithographic investigations
4

Similar Publications

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

Lotus-inspired cellulose-based aerogel with Janus wettability and vertically aligned vessels for salt-rejecting solar seawater purification.

Carbohydr Polym

March 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:

High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.

View Article and Find Full Text PDF

The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.

View Article and Find Full Text PDF

The precise and rapid extraction of lithium from salt-lake brines is critical to meeting the global demand for lithium resources. However, it remains a major challenge to design ion-transport membranes with accurate recognition and fast transport path for the target ion. Here, we report a triazine covalent organic framework (COF) membrane with high resolution for Li+ and Mg2+ that enables fast Li+ transport while almost completely inhibiting Mg2+ permeation.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!