On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies.

J Phys Chem B

Department of Chemistry, Center for Catalysis and Surface Science and Institute of Environmental Catalysis, Northwestern University, Evanston, Illinois 60208, USA.

Published: February 2005

Vanadia species on aluminas (delta- and gamma-Al2O3) with surface VOx density in the range 0.01-14.2 V/nm2 have been characterized by UV and visible Raman spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and temperature-programmed reduction in hydrogen. It is shown that the alumina phase has little influence on the structure and reducibility of surface VOx species under either dehydrated or hydrated conditions. Three similar types of dispersed VOx species, i.e., monovanadates, polyvanadates, and V2O5, are identified on both aluminas under dehydrated conditions. Upon hydration, polymerized VOx species dominate on the surfaces of the two aluminas. The broad Raman band at around 910 cm(-1), observed on dehydrated V/delta-, gamma-Al2O3 at all V loadings (0.01-14.2 V/nm2), is assigned to the interface mode (V-O-Al) instead of the conventionally assigned V-O-V bond. The direct observation of the interface bond is of significance for the understanding of redox catalysis because this bond has been considered to be the key site in oxidation reactions catalyzed by supported vanadia. Two types of frequency shifts of the V=O stretching band (1013-1035 cm(-1)) have been observed in the Raman spectra of V/Al2O3: a shift as a function of surface VOx density and a shift as a function of excitation wavelength. The shift of the V=O band to higher wavenumbers with increasing surface VOx density is due to the change of VOx structure. The V=O stretching band in dispersed vanadia always appears at lower wavenumber in UV Raman spectra than in visible Raman spectra for the same V/Al2O3 sample. This shift is explained by selective resonance enhancement according to the UV-Vis DRS results. It implies that UV Raman has higher sensitivity to isolated and less polymerized VOx species while visible Raman is more sensitive to highly polymerized VOx species and crystalline V2O5. These results show that a multiwavelength excitation approach provides a more complete structural characterization of supported VOx catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp046011mDOI Listing

Publication Analysis

Top Keywords

vox species
20
visible raman
16
surface vox
16
vox density
12
polymerized vox
12
raman spectra
12
vox
10
raman
8
raman spectroscopy
8
spectroscopy uv-visible
8

Similar Publications

Engineering Dual Active Sites and Defect Structure in Nanozymes to Reprogram Jawbone Microenvironment for Osteoradionecrosis Therapy.

Adv Sci (Weinh)

December 2024

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.

Four to eight percent of patients with head and neck cancer will develop osteoradionecrosis of the jaw (ORNJ) after radiotherapy. Various radiation-induced tissue injuries are associated with reactive oxygen and nitrogen species (RONS) overproduction. Herein, Fe doping is used in VO (Fe-VO) nanozymes with multienzyme activities for ORNJ treatment via RONS scavenging.

View Article and Find Full Text PDF

The hydrodeoxygenation of amide to amine is one of the most important amine synthetic approaches in chemical engineering. However, low amide reactivity and poor amine selectivity remain big challenges for catalytic hydrodeoxygenation of amides. Here, Ru-VO/TiO catalysts with different V/Ru atomic ratios were prepared with the sequential impregnation method.

View Article and Find Full Text PDF
Article Synopsis
  • * The study proposes using sodium (Na) intercalation in FeVO (FVO) to increase active sites while stabilizing the crystal structure through the interaction of sodium and iron ions with the negatively charged VOx lattice.
  • * The electrochemical results show FVO-Na achieving a discharge capacity of 370 mAh/g at 0.1 A/g and maintaining 200 mAh/g at 5 A/g after 2000 cycles, demonstrating superior performance compared to FeVO alone, making FVO-Na a promising cathode material for zinc ion batteries
View Article and Find Full Text PDF

Background And Objectives: To reduce the risk of transfusion-transmitted malaria (TTM) from transfusible components, Australia tests for malaria antibodies in both travellers returning from and former residents of malaria-endemic areas. The testing is performed a minimum of 120 days after last potential exposure. TTM is an extremely rare event and managing the risk adds considerable complexity.

View Article and Find Full Text PDF

Background And Objectives: Plasmodium species are naturally transmitted by Anopheles mosquitos. The parasite infects red blood cells (RBCs) and can be transfused with blood products. In non-endemic areas, the main risk of infection arises from travellers coming back and people immigrating from malaria-endemic regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!