MgO-, SiO2-, and gamma-Al2O3-supported platinum clusters and particles (with average diameters ranging from 11 to 45 A) and zeolite-supported Ir4 clusters (approximately 6 A in diameter) were characterized by extended X-ray absorption fine structure spectroscopy in the presence of H2, O2, ethene, propene, and ethane, as well as under conditions of alkene hydrogenation catalysis. The results indicate that under various atmospheres, the presence of adsorbates affects the smaller platinum clusters (11 A) on gamma-Al2O3 more substantially than the larger platinum particles (i.e., those greater than approximately 21 A in average diameter) on MgO or SiO2. When Pt/gamma-Al2O3 was exposed to H2, the platinum morphology did not change, although the Pt-Pt bond distance increased. In contrast, when the same sample was exposed to O2, complete oxidative fragmentation took place. This processes was reversed following subsequent treatment with H2. Exposure to alkenes changed both the morphology and electron density (as indicated by X-ray absorption near-edge spectra) of the gamma-Al2O3-supported platinum clusters. Under conditions of alkene hydrogenation catalysis at room temperature, the electronic properties and the structure of the platinum clusters were found to depend on the reactant composition and the nature of molecules involved in the reaction process. The effects of the reactant gases on the smaller iridium clusters (Ir4) were substantially less pronounced, apparently as a consequence of the extremely small number of atoms in each iridium cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp048907x | DOI Listing |
Inorg Chem Front
January 2025
Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557.
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Biotherapy and Department of Hematology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. Electronic address:
Acute kidney injury (AKI) is a common clinical syndrome characterized by the rapid loss of renal filtration function. No standard therapeutic agent option is currently available. The development and progression of AKI is a continuous and dynamical pathological process.
View Article and Find Full Text PDFFront Neurol
December 2024
IIIrd Medical Department with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria.
Background: Electrotherapy has been investigated in chronic pain and diabetic peripheral neuropathy, however prospective trials in patients with chemotherapy-induced peripheral neuropathy (CIPN) are scarce.
Methods: Fifty-one patients with CIPN ≥ grade 1 subsequent to receiving platinum- and/or taxane-based chemotherapy types were randomized to 8 weeks of high tone external muscle stimulation (HTEMS) or transcutaneous electrical nerve stimulation (TENS). The primary outcome were changes in the EORTC-QLQ-CIPN20 questionnaire.
ACS Nano
January 2025
Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
Nanoparticulate electrocatalysts for the oxygen reduction reaction are structurally diverse materials. Scanning transmission electron microscopy (STEM) has long been the go-to tool to obtain high-quality information about their nanoscale structure. More recently, its four-dimensional modality has emerged as a tool for a comprehensive crystal structure analysis using large data sets of diffraction patterns.
View Article and Find Full Text PDFNat Commun
January 2025
College of Energy, Xiamen University, Xiamen, China.
The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe) configurations ((RE-Pt)-PtTe HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!